mirror of
https://git.code.sf.net/p/zint/code
synced 2025-05-22 03:05:11 -04:00
HANXIN: 0xFFE terminator; reedsol/AZTEC: stack-based; AZTEC/HANXIN/QR/GRIDMATRIX speedups; #209
This commit is contained in:
parent
ab379a233d
commit
cd214addba
70 changed files with 5703 additions and 2907 deletions
|
@ -37,9 +37,9 @@
|
|||
// <Some notes on the theory and implementation need to be added here>
|
||||
|
||||
// Usage:
|
||||
// First call rs_init_gf(poly) to set up the Galois Field parameters.
|
||||
// Then call rs_init_code(size, index) to set the encoding size
|
||||
// Then call rs_encode(datasize, data, out) to encode the data.
|
||||
// First call rs_init_gf(&rs, prime_poly) to set up the Galois Field parameters.
|
||||
// Then call rs_init_code(&rs, nsym, index) to set the encoding size
|
||||
// Then call rs_encode(&rs, datalen, data, out) to encode the data.
|
||||
//
|
||||
// These can be called repeatedly as required - but note that
|
||||
// rs_init_code must be called following any rs_init_gf call.
|
||||
|
@ -48,129 +48,220 @@
|
|||
// replaced with constants in the obvious way, and additionally
|
||||
// malloc/free can be avoided by using static arrays of a suitable
|
||||
// size.
|
||||
// Note: use of statics has been done for (up to) 8-bit tables.
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#include <malloc.h>
|
||||
#endif
|
||||
#include <assert.h>
|
||||
#include "common.h"
|
||||
#include "reedsol.h"
|
||||
static int logmod; // 2**symsize - 1
|
||||
static int rlen;
|
||||
#include "reedsol_logs.h"
|
||||
|
||||
static int *logt = NULL, *alog = NULL, *rspoly = NULL;
|
||||
|
||||
// rs_init_gf(poly) initialises the parameters for the Galois Field.
|
||||
// rs_init_gf(&rs, prime_poly) initialises the parameters for the Galois Field.
|
||||
// The symbol size is determined from the highest bit set in poly
|
||||
// This implementation will support sizes up to 30 bits (though that
|
||||
// will result in very large log/antilog tables) - bit sizes of
|
||||
// 8 or 4 are typical
|
||||
// This implementation will support sizes up to 8 bits (see rs_unit_init_gf()
|
||||
// for sizes > 8 bits and <= 30 bits) - bit sizes of 8 or 4 are typical
|
||||
//
|
||||
// The poly is the bit pattern representing the GF characteristic
|
||||
// polynomial. e.g. for ECC200 (8-bit symbols) the polynomial is
|
||||
// a**8 + a**5 + a**3 + a**2 + 1, which translates to 0x12d.
|
||||
|
||||
INTERNAL void rs_init_gf(const int poly) {
|
||||
int m, b, p, v;
|
||||
INTERNAL void rs_init_gf(rs_t *rs, const unsigned int prime_poly) {
|
||||
struct item {
|
||||
const unsigned char *logt;
|
||||
const unsigned char *alog;
|
||||
};
|
||||
/* To add a new prime poly of degree <= 8 add its details to this table and to the table in `test_generate()`
|
||||
* in "backend/tests/test_reedsol.c" and regenerate the log tables by running "./test_reedsol -f generate -g".
|
||||
* Paste the result in "reedsol_logs.h" */
|
||||
static const struct item data[] = {
|
||||
{ logt_0x13, alog_0x13 }, /* 0 000- */
|
||||
{ logt_0x25, alog_0x25 }, /* 0 001- */
|
||||
{ logt_0x43, alog_0x43 }, /* 0 010- */
|
||||
{ NULL, NULL },
|
||||
{ logt_0x89, alog_0x89 }, /* 0 100- */
|
||||
{ NULL, NULL },
|
||||
{ NULL, NULL },
|
||||
{ NULL, NULL },
|
||||
{ logt_0x11d, alog_0x11d }, /* 1 000- */
|
||||
{ logt_0x12d, alog_0x12d }, /* 1 001- */
|
||||
{ NULL, NULL },
|
||||
{ logt_0x163, alog_0x163 }, /* 1 011- */
|
||||
};
|
||||
|
||||
// Suppress clang-tidy clang-analyzer-core.UndefinedBinaryOperatorResult warning
|
||||
assert(poly >= 2);
|
||||
/* Using bits 9-6 as hash to save a few cycles */
|
||||
/* Alter this hash or just iterate if new prime poly added that doesn't fit */
|
||||
unsigned int hash = prime_poly >> 5;
|
||||
|
||||
// Find the top bit, and hence the symbol size
|
||||
for (b = 1, m = 0; b <= poly; b <<= 1)
|
||||
m++;
|
||||
b >>= 1;
|
||||
m--;
|
||||
|
||||
// Ensure m not negative to supress gcc -Walloc-size-larger-than
|
||||
if (m < 0) {
|
||||
m = 0;
|
||||
}
|
||||
|
||||
// Calculate the log/alog tables
|
||||
logmod = (1 << m) - 1;
|
||||
logt = (int *) malloc(sizeof (int) * (logmod + 1));
|
||||
alog = (int *) malloc(sizeof (int) * logmod);
|
||||
|
||||
for (p = 1, v = 0; v < logmod; v++) {
|
||||
alog[v] = p;
|
||||
logt[p] = v;
|
||||
p <<= 1;
|
||||
if (p & b)
|
||||
p ^= poly;
|
||||
}
|
||||
rs->logt = data[hash].logt;
|
||||
rs->alog = data[hash].alog;
|
||||
}
|
||||
|
||||
// rs_init_code(nsym, index) initialises the Reed-Solomon encoder
|
||||
// rs_init_code(&rs, nsym, index) initialises the Reed-Solomon encoder
|
||||
// nsym is the number of symbols to be generated (to be appended
|
||||
// to the input data). index is usually 1 - it is the index of
|
||||
// the constant in the first term (i) of the RS generator polynomial:
|
||||
// (x + 2**i)*(x + 2**(i+1))*... [nsym terms]
|
||||
// For ECC200, index is 1.
|
||||
|
||||
INTERNAL void rs_init_code(const int nsym, int index) {
|
||||
#include <stdio.h>
|
||||
INTERNAL void rs_init_code(rs_t *rs, const int nsym, int index) {
|
||||
int i, k;
|
||||
const unsigned char *logt = rs->logt;
|
||||
const unsigned char *alog = rs->alog;
|
||||
unsigned char *rspoly = rs->rspoly;
|
||||
|
||||
rspoly = (int *) malloc(sizeof (int) * (nsym + 1));
|
||||
|
||||
rlen = nsym;
|
||||
rs->nsym = nsym;
|
||||
|
||||
rspoly[0] = 1;
|
||||
for (i = 1; i <= nsym; i++) {
|
||||
rspoly[i] = 1;
|
||||
for (k = i - 1; k > 0; k--) {
|
||||
if (rspoly[k])
|
||||
rspoly[k] = alog[(logt[rspoly[k]] + index) % logmod];
|
||||
rspoly[k] ^= rspoly[k - 1];
|
||||
rspoly[k] = alog[logt[rspoly[k]] + index]; /* Multiply coeff by 2**index */
|
||||
rspoly[k] ^= rspoly[k - 1]; /* Add coeff of x**(k-1) * x */
|
||||
}
|
||||
rspoly[0] = alog[(logt[rspoly[0]] + index) % logmod];
|
||||
rspoly[0] = alog[logt[rspoly[0]] + index]; /* 2**(i + (i+1) + ... + index) */
|
||||
index++;
|
||||
}
|
||||
}
|
||||
|
||||
INTERNAL void rs_encode(const size_t len, const unsigned char *data, unsigned char *res) {
|
||||
/* rs_encode(&rs, datalen, data, res) generates nsym Reed-Solomon codes (nsym as given in rs_init_code())
|
||||
* and places them in reverse order in res */
|
||||
|
||||
INTERNAL void rs_encode(const rs_t *rs, const int datalen, const unsigned char *data, unsigned char *res) {
|
||||
int i, k;
|
||||
for (i = 0; i < rlen; i++)
|
||||
res[i] = 0;
|
||||
for (i = 0; i < (int) len; i++) {
|
||||
int m = res[rlen - 1] ^ data[i];
|
||||
for (k = rlen - 1; k > 0; k--) {
|
||||
if (m && rspoly[k])
|
||||
res[k] = (unsigned char) (res[k - 1] ^ alog[(logt[m] + logt[rspoly[k]]) % logmod]);
|
||||
else
|
||||
res[k] = res[k - 1];
|
||||
}
|
||||
if (m && rspoly[0])
|
||||
res[0] = (unsigned char) (alog[(logt[m] + logt[rspoly[0]]) % logmod]);
|
||||
else
|
||||
const unsigned char *logt = rs->logt;
|
||||
const unsigned char *alog = rs->alog;
|
||||
const unsigned char *rspoly = rs->rspoly;
|
||||
const int nsym = rs->nsym;
|
||||
|
||||
memset(res, 0, nsym);
|
||||
for (i = 0; i < datalen; i++) {
|
||||
unsigned int m = res[nsym - 1] ^ data[i];
|
||||
if (m) {
|
||||
unsigned int log_m = logt[m];
|
||||
for (k = nsym - 1; k > 0; k--) {
|
||||
if (rspoly[k])
|
||||
res[k] = (unsigned char) (res[k - 1] ^ alog[log_m + logt[rspoly[k]]]);
|
||||
else
|
||||
res[k] = res[k - 1];
|
||||
}
|
||||
res[0] = alog[log_m + logt[rspoly[0]]]; /* rspoly[0] can't be zero */
|
||||
} else {
|
||||
memmove(res + 1, res, nsym - 1);
|
||||
res[0] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* The same as above but for larger bitlengths - Aztec code compatible */
|
||||
INTERNAL void rs_encode_long(const int len, const unsigned int *data, unsigned int *res) {
|
||||
/* The same as above but for unsigned int data and result - Aztec code compatible */
|
||||
|
||||
INTERNAL void rs_encode_uint(const rs_t *rs, const int datalen, const unsigned int *data, unsigned int *res) {
|
||||
int i, k;
|
||||
for (i = 0; i < rlen; i++)
|
||||
res[i] = 0;
|
||||
for (i = 0; i < len; i++) {
|
||||
int m = res[rlen - 1] ^ data[i];
|
||||
for (k = rlen - 1; k > 0; k--) {
|
||||
if (m && rspoly[k])
|
||||
res[k] = res[k - 1] ^ alog[(logt[m] + logt[rspoly[k]]) % logmod];
|
||||
else
|
||||
res[k] = res[k - 1];
|
||||
}
|
||||
if (m && rspoly[0])
|
||||
res[0] = alog[(logt[m] + logt[rspoly[0]]) % logmod];
|
||||
else
|
||||
const unsigned char *logt = rs->logt;
|
||||
const unsigned char *alog = rs->alog;
|
||||
const unsigned char *rspoly = rs->rspoly;
|
||||
const int nsym = rs->nsym;
|
||||
|
||||
memset(res, 0, sizeof(unsigned int) * nsym);
|
||||
for (i = 0; i < datalen; i++) {
|
||||
unsigned int m = res[nsym - 1] ^ data[i];
|
||||
if (m) {
|
||||
unsigned int log_m = logt[m];
|
||||
for (k = nsym - 1; k > 0; k--) {
|
||||
if (rspoly[k])
|
||||
res[k] = res[k - 1] ^ alog[log_m + logt[rspoly[k]]];
|
||||
else
|
||||
res[k] = res[k - 1];
|
||||
}
|
||||
res[0] = alog[log_m + logt[rspoly[0]]];
|
||||
} else {
|
||||
memmove(res + 1, res, sizeof(unsigned int) * (nsym - 1));
|
||||
res[0] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Free memory */
|
||||
INTERNAL void rs_free(void) {
|
||||
free(logt);
|
||||
free(alog);
|
||||
free(rspoly);
|
||||
rspoly = NULL;
|
||||
/* Versions of the above for bitlengths > 8 and <= 30 and unsigned int data and results - Aztec code compatible */
|
||||
|
||||
// Usage:
|
||||
// First call rs_uint_init_gf(&rs_uint, prime_poly, logmod) to set up the Galois Field parameters.
|
||||
// Then call rs_uint_init_code(&rs_uint, nsym, index) to set the encoding size
|
||||
// Then call rs_uint_encode(&rs_uint, datalen, data, out) to encode the data.
|
||||
// Then call rs_uint_free(&rs_uint) to free the log tables.
|
||||
|
||||
/* `logmod` (field characteristic) will be 2**bitlength - 1, eg 1023 for bitlength 10, 4095 for bitlength 12 */
|
||||
INTERNAL void rs_uint_init_gf(rs_uint_t *rs_uint, const unsigned int prime_poly, const int logmod) {
|
||||
int b, p, v;
|
||||
unsigned int *logt, *alog;
|
||||
|
||||
b = logmod + 1;
|
||||
|
||||
logt = (unsigned int *) malloc(sizeof(unsigned int) * b);
|
||||
alog = (unsigned int *) malloc(sizeof(unsigned int) * b * 2);
|
||||
|
||||
// Calculate the log/alog tables
|
||||
for (p = 1, v = 0; v < logmod; v++) {
|
||||
alog[v] = p;
|
||||
alog[logmod + v] = p; /* Double up, avoids mod */
|
||||
logt[p] = v;
|
||||
p <<= 1;
|
||||
if (p & b) /* If overflow */
|
||||
p ^= prime_poly; /* Subtract prime poly */
|
||||
}
|
||||
rs_uint->logt = logt;
|
||||
rs_uint->alog = alog;
|
||||
}
|
||||
|
||||
INTERNAL void rs_uint_init_code(rs_uint_t *rs_uint, const int nsym, int index) {
|
||||
int i, k;
|
||||
const unsigned int *logt = rs_uint->logt;
|
||||
const unsigned int *alog = rs_uint->alog;
|
||||
unsigned short *rspoly = rs_uint->rspoly;
|
||||
|
||||
rs_uint->nsym = nsym;
|
||||
|
||||
rspoly[0] = 1;
|
||||
for (i = 1; i <= nsym; i++) {
|
||||
rspoly[i] = 1;
|
||||
for (k = i - 1; k > 0; k--) {
|
||||
if (rspoly[k])
|
||||
rspoly[k] = alog[(logt[rspoly[k]] + index)];
|
||||
rspoly[k] ^= rspoly[k - 1];
|
||||
}
|
||||
rspoly[0] = alog[(logt[rspoly[0]] + index)];
|
||||
index++;
|
||||
}
|
||||
}
|
||||
|
||||
INTERNAL void rs_uint_encode(const rs_uint_t *rs_uint, const int datalen, const unsigned int *data, unsigned int *res) {
|
||||
int i, k;
|
||||
const unsigned int *logt = rs_uint->logt;
|
||||
const unsigned int *alog = rs_uint->alog;
|
||||
const unsigned short *rspoly = rs_uint->rspoly;
|
||||
const int nsym = rs_uint->nsym;
|
||||
|
||||
memset(res, 0, sizeof(unsigned int) * nsym);
|
||||
for (i = 0; i < datalen; i++) {
|
||||
unsigned int m = res[nsym - 1] ^ data[i];
|
||||
if (m) {
|
||||
unsigned int log_m = logt[m];
|
||||
for (k = nsym - 1; k > 0; k--) {
|
||||
if (rspoly[k])
|
||||
res[k] = res[k - 1] ^ alog[log_m + logt[rspoly[k]]];
|
||||
else
|
||||
res[k] = res[k - 1];
|
||||
}
|
||||
res[0] = alog[log_m + logt[rspoly[0]]];
|
||||
} else {
|
||||
memmove(res + 1, res, sizeof(unsigned int) * (nsym - 1));
|
||||
res[0] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
INTERNAL void rs_uint_free(rs_uint_t *rs_uint) {
|
||||
free(rs_uint->logt);
|
||||
free(rs_uint->alog);
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue