mirror of
https://github.com/hedgedoc/hedgedoc.git
synced 2025-05-24 20:14:35 -04:00
Updated codemirror to 5.4.0
This commit is contained in:
parent
1d843c8ac2
commit
01685c255f
69 changed files with 2988 additions and 558 deletions
72
public/vendor/codemirror/mode/mathematica/index.html
vendored
Executable file
72
public/vendor/codemirror/mode/mathematica/index.html
vendored
Executable file
|
@ -0,0 +1,72 @@
|
|||
<!doctype html>
|
||||
|
||||
<title>CodeMirror: Mathematica mode</title>
|
||||
<meta charset="utf-8"/>
|
||||
<link rel=stylesheet href="../../doc/docs.css">
|
||||
|
||||
<link rel=stylesheet href=../../lib/codemirror.css>
|
||||
<script src=../../lib/codemirror.js></script>
|
||||
<script src=../../addon/edit/matchbrackets.js></script>
|
||||
<script src=mathematica.js></script>
|
||||
<style type=text/css>
|
||||
.CodeMirror {border-top: 1px solid black; border-bottom: 1px solid black;}
|
||||
</style>
|
||||
<div id=nav>
|
||||
<a href="http://codemirror.net"><h1>CodeMirror</h1><img id=logo src="../../doc/logo.png"></a>
|
||||
|
||||
<ul>
|
||||
<li><a href="../../index.html">Home</a>
|
||||
<li><a href="../../doc/manual.html">Manual</a>
|
||||
<li><a href="https://github.com/codemirror/codemirror">Code</a>
|
||||
</ul>
|
||||
<ul>
|
||||
<li><a href="../index.html">Language modes</a>
|
||||
<li><a class=active href="#">Mathematica</a>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<article>
|
||||
<h2>Mathematica mode</h2>
|
||||
|
||||
|
||||
<textarea id="mathematicaCode">
|
||||
(* example Mathematica code *)
|
||||
(* Dualisiert wird anhand einer Polarität an einer
|
||||
Quadrik $x^t Q x = 0$ mit regulärer Matrix $Q$ (also
|
||||
mit $det(Q) \neq 0$), z.B. die Identitätsmatrix.
|
||||
$p$ ist eine Liste von Polynomen - ein Ideal. *)
|
||||
dualize::"singular" = "Q must be regular: found Det[Q]==0.";
|
||||
dualize[ Q_, p_ ] := Block[
|
||||
{ m, n, xv, lv, uv, vars, polys, dual },
|
||||
If[Det[Q] == 0,
|
||||
Message[dualize::"singular"],
|
||||
m = Length[p];
|
||||
n = Length[Q] - 1;
|
||||
xv = Table[Subscript[x, i], {i, 0, n}];
|
||||
lv = Table[Subscript[l, i], {i, 1, m}];
|
||||
uv = Table[Subscript[u, i], {i, 0, n}];
|
||||
(* Konstruiere Ideal polys. *)
|
||||
If[m == 0,
|
||||
polys = Q.uv,
|
||||
polys = Join[p, Q.uv - Transpose[Outer[D, p, xv]].lv]
|
||||
];
|
||||
(* Eliminiere die ersten n + 1 + m Variablen xv und lv
|
||||
aus dem Ideal polys. *)
|
||||
vars = Join[xv, lv];
|
||||
dual = GroebnerBasis[polys, uv, vars];
|
||||
(* Ersetze u mit x im Ergebnis. *)
|
||||
ReplaceAll[dual, Rule[u, x]]
|
||||
]
|
||||
]
|
||||
</textarea>
|
||||
|
||||
<script>
|
||||
var mathematicaEditor = CodeMirror.fromTextArea(document.getElementById('mathematicaCode'), {
|
||||
mode: 'text/x-mathematica',
|
||||
lineNumbers: true,
|
||||
matchBrackets: true
|
||||
});
|
||||
</script>
|
||||
|
||||
<p><strong>MIME types defined:</strong> <code>text/x-mathematica</code> (Mathematica).</p>
|
||||
</article>
|
Loading…
Add table
Add a link
Reference in a new issue