/* * FIPS-180-1 compliant SHA-1 implementation * * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This file is part of mbed TLS (https://tls.mbed.org) and was downloaded from * https://github.com/Secure-Embedded-Systems/RSA-example/tree/master/library/. */ /* * The SHA-1 standard was published by NIST in 1993. * * http://www.itl.nist.gov/fipspubs/fip180-1.htm */ #include "sha1.h" #include /* Implementation that should never be optimized out by the compiler */ static void zeroize(void *v, size_t n) { volatile uint8_t *p = (uint8_t *)v; while (n--) *p++ = 0; } /* * 32-bit integer manipulation macros (big endian) */ #ifndef GET_UINT32_BE #define GET_UINT32_BE(n, b, i) \ { \ (n) = ((uint32_t)(b)[(i)] << 24) | ((uint32_t)(b)[(i) + 1] << 16) | \ ((uint32_t)(b)[(i) + 2] << 8) | ((uint32_t)(b)[(i) + 3]); \ } #endif #ifndef PUT_UINT32_BE #define PUT_UINT32_BE(n, b, i) \ { \ (b)[(i)] = (uint8_t)((n) >> 24); \ (b)[(i) + 1] = (uint8_t)((n) >> 16); \ (b)[(i) + 2] = (uint8_t)((n) >> 8); \ (b)[(i) + 3] = (uint8_t)((n)); \ } #endif void sha1_init(sha1_context *ctx) { memset(ctx, 0, sizeof(sha1_context)); } void sha1_free(sha1_context *ctx) { if (ctx == NULL) return; zeroize(ctx, sizeof(sha1_context)); } void sha1_clone(sha1_context *dst, const sha1_context *src) { *dst = *src; } /* * SHA-1 context setup */ void sha1_starts(sha1_context *ctx) { ctx->total[0] = 0; ctx->total[1] = 0; ctx->state[0] = 0x67452301; ctx->state[1] = 0xEFCDAB89; ctx->state[2] = 0x98BADCFE; ctx->state[3] = 0x10325476; ctx->state[4] = 0xC3D2E1F0; } void sha1_process(sha1_context *ctx, const uint8_t data[64]) { uint32_t temp, W[16], A, B, C, D, E; GET_UINT32_BE(W[0], data, 0); GET_UINT32_BE(W[1], data, 4); GET_UINT32_BE(W[2], data, 8); GET_UINT32_BE(W[3], data, 12); GET_UINT32_BE(W[4], data, 16); GET_UINT32_BE(W[5], data, 20); GET_UINT32_BE(W[6], data, 24); GET_UINT32_BE(W[7], data, 28); GET_UINT32_BE(W[8], data, 32); GET_UINT32_BE(W[9], data, 36); GET_UINT32_BE(W[10], data, 40); GET_UINT32_BE(W[11], data, 44); GET_UINT32_BE(W[12], data, 48); GET_UINT32_BE(W[13], data, 52); GET_UINT32_BE(W[14], data, 56); GET_UINT32_BE(W[15], data, 60); #define S(x, n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n))) #define R(t) \ (temp = W[(t - 3) & 0x0F] ^ W[(t - 8) & 0x0F] ^ W[(t - 14) & 0x0F] ^ \ W[t & 0x0F], \ (W[t & 0x0F] = S(temp, 1))) #define P(a, b, c, d, e, x) \ { \ e += S(a, 5) + F(b, c, d) + K + x; \ b = S(b, 30); \ } A = ctx->state[0]; B = ctx->state[1]; C = ctx->state[2]; D = ctx->state[3]; E = ctx->state[4]; #define F(x, y, z) (z ^ (x & (y ^ z))) #define K 0x5A827999 P(A, B, C, D, E, W[0]); P(E, A, B, C, D, W[1]); P(D, E, A, B, C, W[2]); P(C, D, E, A, B, W[3]); P(B, C, D, E, A, W[4]); P(A, B, C, D, E, W[5]); P(E, A, B, C, D, W[6]); P(D, E, A, B, C, W[7]); P(C, D, E, A, B, W[8]); P(B, C, D, E, A, W[9]); P(A, B, C, D, E, W[10]); P(E, A, B, C, D, W[11]); P(D, E, A, B, C, W[12]); P(C, D, E, A, B, W[13]); P(B, C, D, E, A, W[14]); P(A, B, C, D, E, W[15]); P(E, A, B, C, D, R(16)); P(D, E, A, B, C, R(17)); P(C, D, E, A, B, R(18)); P(B, C, D, E, A, R(19)); #undef K #undef F #define F(x, y, z) (x ^ y ^ z) #define K 0x6ED9EBA1 P(A, B, C, D, E, R(20)); P(E, A, B, C, D, R(21)); P(D, E, A, B, C, R(22)); P(C, D, E, A, B, R(23)); P(B, C, D, E, A, R(24)); P(A, B, C, D, E, R(25)); P(E, A, B, C, D, R(26)); P(D, E, A, B, C, R(27)); P(C, D, E, A, B, R(28)); P(B, C, D, E, A, R(29)); P(A, B, C, D, E, R(30)); P(E, A, B, C, D, R(31)); P(D, E, A, B, C, R(32)); P(C, D, E, A, B, R(33)); P(B, C, D, E, A, R(34)); P(A, B, C, D, E, R(35)); P(E, A, B, C, D, R(36)); P(D, E, A, B, C, R(37)); P(C, D, E, A, B, R(38)); P(B, C, D, E, A, R(39)); #undef K #undef F #define F(x, y, z) ((x & y) | (z & (x | y))) #define K 0x8F1BBCDC P(A, B, C, D, E, R(40)); P(E, A, B, C, D, R(41)); P(D, E, A, B, C, R(42)); P(C, D, E, A, B, R(43)); P(B, C, D, E, A, R(44)); P(A, B, C, D, E, R(45)); P(E, A, B, C, D, R(46)); P(D, E, A, B, C, R(47)); P(C, D, E, A, B, R(48)); P(B, C, D, E, A, R(49)); P(A, B, C, D, E, R(50)); P(E, A, B, C, D, R(51)); P(D, E, A, B, C, R(52)); P(C, D, E, A, B, R(53)); P(B, C, D, E, A, R(54)); P(A, B, C, D, E, R(55)); P(E, A, B, C, D, R(56)); P(D, E, A, B, C, R(57)); P(C, D, E, A, B, R(58)); P(B, C, D, E, A, R(59)); #undef K #undef F #define F(x, y, z) (x ^ y ^ z) #define K 0xCA62C1D6 P(A, B, C, D, E, R(60)); P(E, A, B, C, D, R(61)); P(D, E, A, B, C, R(62)); P(C, D, E, A, B, R(63)); P(B, C, D, E, A, R(64)); P(A, B, C, D, E, R(65)); P(E, A, B, C, D, R(66)); P(D, E, A, B, C, R(67)); P(C, D, E, A, B, R(68)); P(B, C, D, E, A, R(69)); P(A, B, C, D, E, R(70)); P(E, A, B, C, D, R(71)); P(D, E, A, B, C, R(72)); P(C, D, E, A, B, R(73)); P(B, C, D, E, A, R(74)); P(A, B, C, D, E, R(75)); P(E, A, B, C, D, R(76)); P(D, E, A, B, C, R(77)); P(C, D, E, A, B, R(78)); P(B, C, D, E, A, R(79)); #undef K #undef F ctx->state[0] += A; ctx->state[1] += B; ctx->state[2] += C; ctx->state[3] += D; ctx->state[4] += E; } /* * SHA-1 process buffer */ void sha1_update(sha1_context *ctx, const uint8_t *input, size_t ilen) { size_t fill; uint32_t left; if (ilen == 0) return; left = ctx->total[0] & 0x3F; fill = 64 - left; ctx->total[0] += (uint32_t)ilen; ctx->total[0] &= 0xFFFFFFFF; if (ctx->total[0] < (uint32_t)ilen) ctx->total[1]++; if (left && ilen >= fill) { memcpy((void *)(ctx->buffer + left), input, fill); sha1_process(ctx, ctx->buffer); input += fill; ilen -= fill; left = 0; } while (ilen >= 64) { sha1_process(ctx, input); input += 64; ilen -= 64; } if (ilen > 0) memcpy((void *)(ctx->buffer + left), input, ilen); } static const uint8_t sha1_padding[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; /* * SHA-1 final digest */ void sha1_finish(sha1_context *ctx, uint8_t output[SHA_DIGEST_LENGTH]) { uint32_t last, padn; uint32_t high, low; uint8_t msglen[8]; high = (ctx->total[0] >> 29) | (ctx->total[1] << 3); low = (ctx->total[0] << 3); PUT_UINT32_BE(high, msglen, 0); PUT_UINT32_BE(low, msglen, 4); last = ctx->total[0] & 0x3F; padn = (last < 56) ? (56 - last) : (120 - last); sha1_update(ctx, sha1_padding, padn); sha1_update(ctx, msglen, 8); PUT_UINT32_BE(ctx->state[0], output, 0); PUT_UINT32_BE(ctx->state[1], output, 4); PUT_UINT32_BE(ctx->state[2], output, 8); PUT_UINT32_BE(ctx->state[3], output, 12); PUT_UINT32_BE(ctx->state[4], output, 16); } /* * output = SHA-1( input buffer ) */ void sha1(const uint8_t *input, size_t ilen, uint8_t output[SHA_DIGEST_LENGTH]) { sha1_context ctx; sha1_init(&ctx); sha1_starts(&ctx); sha1_update(&ctx, input, ilen); sha1_finish(&ctx, output); sha1_free(&ctx); }