Version 0.15.0

- implemented PE and TE executables relocation for correct Boot Firmware
Volume modification
This commit is contained in:
Nikolaj Schlej 2014-01-09 11:45:49 +01:00
parent 17ee8a445a
commit ead41ba5bb
6 changed files with 1111 additions and 197 deletions

View file

@ -1709,7 +1709,7 @@ UINT8 FfsEngine::constructPadFile(const UINT32 size, const UINT8 revision, const
return ERR_SUCCESS;
}
UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & queue, const UINT8 revision, const UINT8 erasePolarity)
UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & queue, const UINT8 revision, const UINT8 erasePolarity, const UINT32 base)
{
if (!index.isValid())
return ERR_SUCCESS;
@ -1718,13 +1718,13 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
UINT8 result;
// No action is needed, just return header + body + tail
if (model->action(index) == NoAction) {
if (!base && model->action(index) == NoAction) {
reconstructed = model->header(index).append(model->body(index)).append(model->tail(index));
queue.enqueue(reconstructed);
return ERR_SUCCESS;
}
// Remove item
else if (model->action(index) == Remove) {
if (model->action(index) == Remove) {
// Volume can be removed by replacing all it's contents with empty bytes
if (model->type(index) == Volume) {
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*) model->header(index).constData();
@ -1746,10 +1746,10 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
return ERR_NOT_IMPLEMENTED;
}
// Reconstruct item and it's children recursive
else if (model->action(index) == Create
|| model->action(index) == Insert
|| model->action(index) == Replace
|| model->action(index) == Rebuild) {
if (base || model->action(index) == Create
|| model->action(index) == Insert
|| model->action(index) == Replace
|| model->action(index) == Rebuild) {
QQueue<QByteArray> childrenQueue;
switch (model->type(index)) {
@ -1887,7 +1887,7 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
case Volume:
{
//!TODO: add check for weak aligned volumes
//!TODO: add check for weak aligned volume
QByteArray header = model->header(index);
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*) header.data();
@ -1895,63 +1895,35 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
volumeHeader->Checksum = 0;
volumeHeader->Checksum = calculateChecksum16((UINT16*) volumeHeader, volumeHeader->HeaderLength);
// Get volume size
UINT32 volumeSize;
result = getVolumeSize(header, 0, volumeSize);
if (result)
return result;
// Reconstruct volume body
if (model->rowCount(index)) {
UINT8 polarity = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY ? ERASE_POLARITY_TRUE : ERASE_POLARITY_FALSE;
char empty = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY ? '\xFF' : '\x00';
bool bootVolume = false;
// Check for boot volume
for (int i = 0; i < model->rowCount(index); i++) {
QByteArray hdr = model->header(index.child(i, index.column()));
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*) hdr.data();
if (fileHeader->Type == EFI_FV_FILETYPE_PEI_CORE) {
bootVolume = true;
break;
}
}
// Reconstruct files in volume
for (int i = 0; i < model->rowCount(index); i++) {
// Reconstruct files
result = reconstruct(index.child(i, index.column()), childrenQueue, volumeHeader->Revision, polarity);
if (result)
return result;
}
// Remove all pad files, they will be recreated later
foreach(const QByteArray & child, childrenQueue) {
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*) child.constData();
if (fileHeader->Type == EFI_FV_FILETYPE_PAD)
childrenQueue.removeAll(child);
}
// Ensure that Volume Top File is the last file of the volume
foreach(const QByteArray & child, childrenQueue) {
// Check for VTF
if (child.left(sizeof(EFI_GUID)) == EFI_FFS_VOLUME_TOP_FILE_GUID) {
// If VTF is not the last file in the volume
if(childrenQueue.indexOf(child) + 1 != childrenQueue.length()) {
// Remove VTF and add it to the end of the volume
QByteArray vtf = child;
childrenQueue.removeAll(child);
childrenQueue.append(vtf);
}
}
}
// Ensure that AMI file before VTF is the second latest file of the volume
foreach(const QByteArray & child, childrenQueue) {
// Check for AMI before VTF file
if (child.left(sizeof(EFI_GUID)) == EFI_AMI_FFS_FILE_BEFORE_VTF_GUID) {
if(childrenQueue.indexOf(child) + 2 != childrenQueue.length()) {
// Remove file and add it to the end of the volume
QByteArray amiBeforeVtf = child;
childrenQueue.removeAll(child);
childrenQueue.insert(--childrenQueue.end(), amiBeforeVtf);
}
}
}
// Get volume size
UINT32 volumeSize;
result = getVolumeSize(header, 0, volumeSize);
if (result)
return result;
// Construct new volume body
UINT32 offset = 0;
while (!childrenQueue.isEmpty())
{
QByteArray vtf;
QModelIndex vtfIndex;
QByteArray amiBeforeVtf;
QModelIndex amiBeforeVtfIndex;
for (int i = 0; i < model->rowCount(index); i++) {
// Align to 8 byte boundary
UINT32 alignment = offset % 8;
if (alignment) {
@ -1959,47 +1931,55 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
offset += alignment;
reconstructed.append(QByteArray(alignment, empty));
}
// Calculate file base
UINT32 newbase = 0;
if (bootVolume) {
newbase = (UINT32) 0x100000000 - volumeSize + header.size() + offset;
}
// Get file from queue
// Reconstruct file
result = reconstruct(index.child(i, index.column()), childrenQueue, volumeHeader->Revision, polarity, newbase);
if (result)
return result;
// Check for empty queue
if (childrenQueue.isEmpty())
continue;
// Get file from queue
QByteArray file = childrenQueue.dequeue();
EFI_FFS_FILE_HEADER* fileHeader = (EFI_FFS_FILE_HEADER*) file.data();
// This is the second latest file in the volume
if (childrenQueue.count() == 1) {
// This file can be AMI file before VTF
if (file.left(sizeof(EFI_GUID)) == EFI_AMI_FFS_FILE_BEFORE_VTF_GUID) {
// Determine correct offset
UINT32 amiOffset = volumeSize - header.size() - file.size() - EFI_AMI_FFS_FILE_BEFORE_VTF_OFFSET;
// Insert pad file to fill the gap
if (amiOffset > offset) {
// Determine pad file size
UINT32 size = amiOffset - offset;
// Construct pad file
QByteArray pad;
result = constructPadFile(size, revision, polarity, pad);
if (result)
return result;
// Append constructed pad file to volume body
reconstructed.append(pad);
offset = amiOffset;
}
if (amiOffset < offset) {
msg(tr("%1: volume has no free space left").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_VOLUME;
}
}
// Pad file
if (fileHeader->Type == EFI_FV_FILETYPE_PAD)
continue;
// AMI file before VTF
if (file.left(sizeof(EFI_GUID)) == EFI_AMI_FFS_FILE_BEFORE_VTF_GUID) {
amiBeforeVtf = file;
amiBeforeVtfIndex = index.child(i, index.column());
continue;
}
// Check alignment
// Volume Top File
if (file.left(sizeof(EFI_GUID)) == EFI_FFS_VOLUME_TOP_FILE_GUID) {
vtf = file;
vtfIndex = index.child(i, index.column());
continue;
}
// Normal file
// Ensure correct alignment
UINT8 alignmentPower;
UINT32 base;
UINT32 alignmentBase;
alignmentPower = ffsAlignmentTable[(fileHeader->Attributes & FFS_ATTRIB_DATA_ALIGNMENT) >> 3];
alignment = (UINT32) pow(2.0, alignmentPower);
base = header.size() + offset + sizeof(EFI_FFS_FILE_HEADER);
if (base % alignment) {
alignmentBase = header.size() + offset + sizeof(EFI_FFS_FILE_HEADER);
if (alignmentBase % alignment) {
// File will be unaligned if added as is, so we must add pad file before it
// Determine pad file size
UINT32 size = alignment - (base % alignment);
UINT32 size = alignment - (alignmentBase % alignment);
// Required padding is smaler then minimal pad file size
while (size < sizeof(EFI_FFS_FILE_HEADER)) {
size += alignment;
@ -2014,92 +1994,6 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
offset += size;
}
// If this is the last file in volume
if (childrenQueue.isEmpty())
{
// Last file of the volume can be Volume Top File
if (file.left(sizeof(EFI_GUID)) == EFI_FFS_VOLUME_TOP_FILE_GUID) {
// Determine correct VTF offset
UINT32 vtfOffset = volumeSize - header.size() - file.size();
if (vtfOffset % 8) {
msg(tr("reconstruct: %1: Wrong size of Volume Top File")
.arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_FILE;
}
// Insert pad file to fill the gap
if (vtfOffset > offset) {
// Determine pad file size
UINT32 size = vtfOffset - offset;
// Construct pad file
QByteArray pad;
result = constructPadFile(size, revision, polarity, pad);
if (result)
return result;
// Append constructed pad file to volume body
reconstructed.append(pad);
offset = vtfOffset;
}
// No more space left in volume
else if (vtfOffset < offset) {
// Check if volume can be grown
UINT8 parentType = model->type(index.parent());
if(parentType != File && parentType != Section) {
msg(tr("%1: can't grow root volume").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_VOLUME;
}
// Grow volume to fit VTF
UINT32 newSize = volumeSize + (offset - vtfOffset) + sizeof(EFI_FFS_FILE_HEADER);
result = growVolume(header, volumeSize, newSize);
if (result)
return result;
// Determine new VTF offset
vtfOffset = newSize - header.size() - file.size();
if (vtfOffset % 8) {
msg(tr("reconstruct: %1: Wrong size of Volume Top File")
.arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_FILE;
}
// Construct pad file
QByteArray pad;
result = constructPadFile(vtfOffset - offset, revision, polarity, pad);
if (result)
return result;
// Append constructed pad file to volume body
reconstructed.append(pad);
reconstructed.append(file);
volumeSize = newSize;
break;
}
}
// Append last file and fill the rest with empty char
else {
reconstructed.append(file);
UINT32 volumeBodySize = volumeSize - header.size();
if (volumeBodySize > (UINT32) reconstructed.size()) {
// Fill volume end with empty char
reconstructed.append(QByteArray(volumeBodySize - reconstructed.size(), empty));
}
else {
// Check if volume can be grown
UINT8 parentType = model->type(index.parent());
if(parentType != File && parentType != Section) {
msg(tr("%1: can't grow root volume").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_VOLUME;
}
// Grow volume to fit new body
UINT32 newSize = header.size() + reconstructed.size();
result = growVolume(header, volumeSize, newSize);
if (result)
return result;
// Fill volume end with empty char
reconstructed.append(QByteArray(newSize - header.size() - reconstructed.size(), empty));
volumeSize = newSize;
}
break;
}
}
// Append current file to new volume body
reconstructed.append(file);
@ -2107,6 +2001,132 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
offset += file.size();
}
// Insert AMI file before VTF to it's correct place
if (!amiBeforeVtf.isEmpty()) {
// Determine correct offset
UINT32 amiOffset = volumeSize - header.size() - amiBeforeVtf.size() - EFI_AMI_FFS_FILE_BEFORE_VTF_OFFSET;
// Insert pad file to fill the gap
if (amiOffset > offset) {
// Determine pad file size
UINT32 size = amiOffset - offset;
// Construct pad file
QByteArray pad;
result = constructPadFile(size, revision, polarity, pad);
if (result)
return result;
// Append constructed pad file to volume body
reconstructed.append(pad);
offset = amiOffset;
}
if (amiOffset < offset) {
msg(tr("reconstruct: %1: volume has no free space left").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_VOLUME;
}
// Calculate file base
UINT32 newbase = 0;
if (bootVolume) {
newbase = (UINT32) 0x100000000 - volumeSize + header.size() + amiOffset;
}
// Reconstruct file again
result = reconstruct(amiBeforeVtfIndex, childrenQueue, volumeHeader->Revision, polarity, newbase);
if (result)
return result;
// Get file from queue
amiBeforeVtf = childrenQueue.dequeue();
// Append AMI file before VTF
reconstructed.append(amiBeforeVtf);
// Change current file offset
offset += amiBeforeVtf.size();
// Align to 8 byte boundary
UINT32 alignment = offset % 8;
if (alignment) {
alignment = 8 - alignment;
offset += alignment;
reconstructed.append(QByteArray(alignment, empty));
}
}
// Insert VTF to it's correct place
if (!vtf.isEmpty()) {
// Determine correct VTF offset
UINT32 vtfOffset = volumeSize - header.size() - vtf.size();
if (vtfOffset % 8) {
msg(tr("reconstruct: %1: Wrong size of Volume Top File")
.arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_FILE;
}
// Insert pad file to fill the gap
if (vtfOffset > offset) {
// Determine pad file size
UINT32 size = vtfOffset - offset;
// Construct pad file
QByteArray pad;
result = constructPadFile(size, revision, polarity, pad);
if (result)
return result;
// Append constructed pad file to volume body
reconstructed.append(pad);
offset = vtfOffset;
}
// No more space left in volume
else if (vtfOffset < offset) {
msg(tr("reconstruct: %1: volume has no free space left").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_VOLUME;
}
// Calculate file base
UINT32 newbase = 0;
if (bootVolume) {
newbase = (UINT32) 0x100000000 - volumeSize + header.size() + vtfOffset;
}
// Reconstruct file
result = reconstruct(vtfIndex, childrenQueue, volumeHeader->Revision, polarity, newbase);
if (result)
return result;
// Get file from queue
vtf = childrenQueue.dequeue();
// Append VTF
reconstructed.append(vtf);
}
else {
// Fill the rest of volume space with empty char
UINT32 volumeBodySize = volumeSize - header.size();
if (volumeBodySize > (UINT32) reconstructed.size()) {
// Fill volume end with empty char
reconstructed.append(QByteArray(volumeBodySize - reconstructed.size(), empty));
}
else if (volumeBodySize < (UINT32) reconstructed.size()) {
// Check if volume can be grown
// Root volume can't be grown yet
UINT8 parentType = model->type(index.parent());
if(parentType != File && parentType != Section) {
msg(tr("reconstruct: %1: can't grow root volume").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
return ERR_INVALID_VOLUME;
}
// Grow volume to fit new body
UINT32 newSize = header.size() + reconstructed.size();
result = growVolume(header, volumeSize, newSize);
if (result)
return result;
// Fill volume end with empty char
reconstructed.append(QByteArray(newSize - header.size() - reconstructed.size(), empty));
volumeSize = newSize;
}
}
// Check new volume size
if ((UINT32)(header.size() + reconstructed.size()) > volumeSize)
{
@ -2182,17 +2202,9 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
// Reconstruct file body
if (model->rowCount(index)) {
for (int i = 0; i < model->rowCount(index); i++) {
// Reconstruct sections
result = reconstruct(index.child(i, index.column()), childrenQueue, revision, empty);
if (result)
return result;
}
// Construct new file body
UINT32 offset = 0;
while (!childrenQueue.isEmpty())
{
for (int i = 0; i < model->rowCount(index); i++) {
// Align to 4 byte boundary
UINT8 alignment = offset % 4;
if (alignment) {
@ -2201,11 +2213,27 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
reconstructed.append(QByteArray(alignment, empty));
}
// Correct base, if needed
UINT32 newbase = 0;
if (base) {
newbase = base + header.size() + offset;
}
// Reconstruct section
result = reconstruct(index.child(i, index.column()), childrenQueue, revision, empty, newbase);
if (result)
return result;
// Check for empty queue
if (childrenQueue.isEmpty())
continue;
// Get section from queue
QByteArray section = childrenQueue.dequeue();
// Append current section to new file body
reconstructed.append(section);
// Change current file offset
offset += section.size();
}
@ -2256,18 +2284,11 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
// Section with children
if (model->rowCount(index)) {
// Reconstruct section body
for (int i = 0; i < model->rowCount(index); i++) {
// Reconstruct subsections
result = reconstruct(index.child(i, index.column()), childrenQueue);
if (result)
return result;
}
// Construct new section body
UINT32 offset = 0;
while (!childrenQueue.isEmpty())
{
// Reconstruct section body
for (int i = 0; i < model->rowCount(index); i++) {
// Align to 4 byte boundary
UINT8 alignment = offset % 4;
if (alignment) {
@ -2276,6 +2297,22 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
reconstructed.append(QByteArray(alignment, '\x00'));
}
// No rebase needed for subsections
/*// Correct base, if needed
UINT32 newbase = 0;
if (base) {
newbase += offset;
}*/
// Reconstruct subsections
result = reconstruct(index.child(i, index.column()), childrenQueue/*, revision, erasePolarity, newbase*/);
if (result)
return result;
// Check for empty queue
if (childrenQueue.isEmpty())
continue;
// Get section from queue
QByteArray section = childrenQueue.dequeue();
@ -2325,7 +2362,7 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
reconstructed = compressed;
}
else if (model->compression(index) != COMPRESSION_ALGORITHM_NONE) {
msg(tr("reconstruct: incorreclty required compression for section of type %1")
msg(tr("reconstruct: incorrectly required compression for section of type %1")
.arg(model->subtype(index)));
return ERR_INVALID_SECTION;
}
@ -2337,6 +2374,15 @@ UINT8 FfsEngine::reconstruct(const QModelIndex & index, QQueue<QByteArray> & que
else
reconstructed = model->body(index);
// Rebase executable section, if needed
if (base && (model->subtype(index) == EFI_SECTION_PE32 || model->subtype(index) == EFI_SECTION_TE)) {
result = rebase(reconstructed, base + header.size());
if (result) {
msg(tr("reconstruct: can't rebase executable"));
return result;
}
}
// Enqueue reconstructed item
queue.enqueue(header.append(reconstructed));
}
@ -2475,3 +2521,141 @@ UINT8 FfsEngine::findTextPatternIn(const QModelIndex & index, const QString & pa
return ERR_SUCCESS;
}
UINT8 FfsEngine::rebase(QByteArray &executable, const UINT32 base)
{
// Relocation data
UINT32 delta; // Delta between old and new bases
UINT32 relocOffset; // Offset of relocation region
UINT32 relocSize; // Size of relocation region
UINT32 teFixup = 0;
// Copy input data to local storage
QByteArray file = executable;
// Populate DOS header
EFI_IMAGE_DOS_HEADER* dosHeader = (EFI_IMAGE_DOS_HEADER*) file.data();
// Check signature
if (dosHeader->e_magic == EFI_IMAGE_DOS_SIGNATURE){
UINT32 offset = dosHeader->e_lfanew;
EFI_IMAGE_PE_HEADER* peHeader = (EFI_IMAGE_PE_HEADER*) (file.data() + offset);
if (peHeader->Signature != EFI_IMAGE_PE_SIGNATURE)
return ERR_UNKNOWN_IMAGE_TYPE;
offset += sizeof(EFI_IMAGE_PE_HEADER);
// Skip file header
offset += sizeof(EFI_IMAGE_FILE_HEADER);
// Check optional header magic
UINT16 magic = *(UINT16*) (file.data() + offset);
if (magic == EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC) {
EFI_IMAGE_OPTIONAL_HEADER32* optHeader = (EFI_IMAGE_OPTIONAL_HEADER32*) (file.data() + offset);
// Get relocation data
delta = base - optHeader->ImageBase;
if (!delta)
// No need to rebase
return ERR_SUCCESS;
relocOffset = optHeader->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress;
relocSize = optHeader->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size;
// Set new base
optHeader->ImageBase = base;
}
else if (magic == EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC) {
EFI_IMAGE_OPTIONAL_HEADER64* optHeader = (EFI_IMAGE_OPTIONAL_HEADER64*) (file.data() + offset);
// Get relocation data
delta = base - optHeader->ImageBase;
if (!delta)
// No need to rebase
return ERR_SUCCESS;
relocOffset = optHeader->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress;
relocSize = optHeader->DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size;
// Set new base
optHeader->ImageBase = base;
}
else
return ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
}
else if (dosHeader->e_magic == EFI_IMAGE_TE_SIGNATURE){
// Populate TE header
EFI_IMAGE_TE_HEADER* teHeader = (EFI_IMAGE_TE_HEADER*) file.data();
// Get relocation data
delta = base - teHeader->ImageBase;
if (!delta)
// No need to rebase
return ERR_SUCCESS;
relocOffset = teHeader->DataDirectory[EFI_IMAGE_TE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress ;
teFixup = teHeader->StrippedSize - sizeof(EFI_IMAGE_TE_HEADER);
relocSize = teHeader->DataDirectory[EFI_IMAGE_TE_DIRECTORY_ENTRY_BASERELOC].Size;
// Set new base
teHeader->ImageBase = base;
}
else
return ERR_UNKNOWN_IMAGE_TYPE;
// No relocations
if (relocOffset == 0)
// No need to rebase
return ERR_SUCCESS;
// Locate relocation section using data directory
EFI_IMAGE_BASE_RELOCATION *RelocBase;
EFI_IMAGE_BASE_RELOCATION *RelocBaseEnd;
UINT16 *Reloc;
UINT16 *RelocEnd;
UINT16 *F16;
UINT32 *F32;
UINT64 *F64;
// Run the whole relocation block
RelocBase = (EFI_IMAGE_BASE_RELOCATION*) (file.data() + relocOffset - teFixup);
RelocBaseEnd = (EFI_IMAGE_BASE_RELOCATION*) (file.data() + relocOffset - teFixup + relocSize);
while (RelocBase < RelocBaseEnd) {
Reloc = (UINT16*) ((UINT8*) RelocBase + sizeof(EFI_IMAGE_BASE_RELOCATION));
RelocEnd = (UINT16*) ((UINT8*) RelocBase + RelocBase->SizeOfBlock);
// Run this relocation record
while (Reloc < RelocEnd) {
UINT8* data = (UINT8*) (file.data() + RelocBase->VirtualAddress - teFixup + (*Reloc & 0x0FFF));
switch ((*Reloc) >> 12) {
case EFI_IMAGE_REL_BASED_ABSOLUTE:
// Do nothing
break;
case EFI_IMAGE_REL_BASED_HIGH:
// Add second 16 bits of delta
F16 = (UINT16*) data;
*F16 = (UINT16)(*F16 + (UINT16)(((UINT32) delta) >> 16));
break;
case EFI_IMAGE_REL_BASED_LOW:
// Add first 16 bits of delta
F16 = (UINT16*) data;
*F16 = (UINT16) (*F16 + (UINT16) delta);
break;
case EFI_IMAGE_REL_BASED_HIGHLOW:
// Add first 32 bits of delta
F32 = (UINT32*) data;
*F32 = *F32 + (UINT32) delta;
break;
case EFI_IMAGE_REL_BASED_DIR64:
// Add all 64 bits of delta
F64 = (UINT64*) data;
*F64 = *F64 + (UINT64) delta;
break;
default:
return ERR_UNKNOWN_RELOCATION_TYPE;
}
// Next reloc record
Reloc += 1;
}
// Next reloc block
RelocBase = (EFI_IMAGE_BASE_RELOCATION*)RelocEnd;
}
executable = file;
return ERR_SUCCESS;
}