fs: utilities for hac2l to print gc headers

This commit is contained in:
Michael Scire 2022-03-14 14:26:45 -07:00 committed by SciresM
parent 2d984822c6
commit c35114bacc
15 changed files with 893 additions and 3 deletions

View file

@ -0,0 +1,103 @@
/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours/common.hpp>
#include <vapours/assert.hpp>
#include <vapours/util.hpp>
#include <vapours/crypto/crypto_memory_clear.hpp>
#include <vapours/crypto/crypto_aes_encryptor.hpp>
namespace ams::crypto::impl {
class CbcMacImpl {
NON_COPYABLE(CbcMacImpl);
NON_MOVEABLE(CbcMacImpl);
public:
static constexpr size_t BlockSize = 0x10;
private:
enum State {
State_None,
State_Initialized,
State_Done,
};
private:
u8 m_mac[BlockSize];
u8 m_buffer[BlockSize];
size_t m_buffered_bytes;
const void *m_cipher_context;
void (*m_cipher_function)(void *dst, const void *src, const void *ctx);
State m_state;
public:
CbcMacImpl() : m_buffered_bytes(0), m_state(State_None) { /* ... */ }
~CbcMacImpl() {
ClearMemory(this, sizeof(*this));
}
template<typename BlockCipher>
void Initialize(const BlockCipher *block_cipher) {
static_assert(BlockCipher::BlockSize == BlockSize);
/* Set our context. */
m_cipher_context = block_cipher;
m_cipher_function = &EncryptBlockCallback<BlockCipher>;
m_buffered_bytes = 0;
std::memset(m_mac, 0, sizeof(m_mac));
m_state = State_Initialized;
}
template<typename BlockCipher>
void Update(const void *data, size_t size) {
this->UpdateGeneric(data, size);
}
template<typename BlockCipher>
void ProcessBlocks(const void *data, size_t size) {
this->ProcessBlocksGeneric(data, size);
}
size_t GetBlockSize() const {
return BlockSize;
}
size_t GetBufferedDataSize() const {
return m_buffered_bytes;
}
void UpdateGeneric(const void *data, size_t size);
void ProcessBlocksGeneric(const void *data, size_t num_blocks);
void ProcessPartialData(const void *data, size_t size);
void ProcessRemainingData(const void *data, size_t size);
void GetMac(void *mac, size_t mac_size);
void MaskBufferedData(const void *data, size_t size);
private:
void ProcessBlock(const void *data);
template<typename BlockCipher>
static void EncryptBlockCallback(void *dst, const void *src, const void *cipher) {
static_assert(BlockCipher::BlockSize == BlockSize);
static_cast<const BlockCipher *>(cipher)->EncryptBlock(dst, BlockCipher::BlockSize, src, BlockCipher::BlockSize);
}
};
template<>
void CbcMacImpl::Update<AesEncryptor128>(const void *data, size_t size);
}

View file

@ -0,0 +1,274 @@
/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vapours/common.hpp>
#include <vapours/assert.hpp>
#include <vapours/util.hpp>
#include <vapours/crypto/crypto_memory_clear.hpp>
#include <vapours/crypto/impl/crypto_ctr_mode_impl.hpp>
#include <vapours/crypto/impl/crypto_cbc_mac_impl.hpp>
namespace ams::crypto::impl {
template<typename BlockCipher>
class CcmModeImpl {
NON_COPYABLE(CcmModeImpl);
NON_MOVEABLE(CcmModeImpl);
public:
static constexpr size_t KeySize = BlockCipher::KeySize;
static constexpr size_t BlockSize = BlockCipher::BlockSize;
private:
enum State {
State_None,
State_ProcessingAad,
State_ProcessingData,
State_DataInputDone,
State_Done,
};
private:
u8 m_mac[BlockSize];
s64 m_given_data_size;
s64 m_given_aad_size;
size_t m_given_mac_size;
s64 m_processed_data_size;
s64 m_processed_aad_size;
State m_state;
CtrModeImpl<BlockCipher> m_ctr_mode_impl;
CbcMacImpl m_cbc_mac_impl;
public:
CcmModeImpl() : m_state(State_None) { /* ... */ }
~CcmModeImpl() {
ClearMemory(this, sizeof(*this));
}
void Initialize(const BlockCipher *cipher, const void *nonce, size_t nonce_size, s64 aad_size, s64 data_size, size_t mac_size) {
/* Check pre-conditions. */
AMS_ASSERT(7 <= nonce_size && nonce_size <= 13);
AMS_ASSERT(4 <= mac_size && mac_size <= 16 && (mac_size % 2) == 0);
AMS_ASSERT(aad_size >= 0);
AMS_ASSERT(data_size >= 0);
if (nonce_size == 7) {
AMS_ASSERT(data_size <= std::numeric_limits<s64>::max());
} else {
AMS_ASSERT(data_size < (INT64_C(1) << ((15 - nonce_size) * 8)));
}
/* Set various size fields. */
m_given_aad_size = aad_size;
m_given_data_size = data_size;
m_given_mac_size = mac_size;
m_processed_aad_size = 0;
m_processed_data_size = 0;
/* Make the initial counter. */
u8 tmp[BlockSize];
MakeInitialCounter(tmp, nonce, nonce_size);
/* Encrypt the block. */
cipher->EncryptBlock(m_mac, BlockSize, tmp, BlockSize);
/* Initialize our ctr mode impl. */
m_ctr_mode_impl.Initialize(cipher, tmp, BlockSize);
m_ctr_mode_impl.IncrementCounter();
/* Make the header block. */
MakeHeaderBlock(tmp, nonce, nonce_size, aad_size, data_size, mac_size);
/* Initialize our cbc mac impl. */
m_cbc_mac_impl.Initialize(cipher);
m_cbc_mac_impl.template Update<BlockCipher>(tmp, BlockSize);
/* Process aad size block. */
if (aad_size > 0) {
this->ProcessEncodedAadSize();
m_state = State_ProcessingAad;
} else {
m_state = State_ProcessingData;
}
}
void UpdateAad(const void *aad, size_t aad_size) {
/* Check pre-conditions. */
AMS_ASSERT(m_state == State_ProcessingAad);
AMS_ASSERT(m_processed_aad_size + static_cast<s64>(aad_size) <= m_given_aad_size);
/* Update on the aad. */
m_cbc_mac_impl.template Update<BlockCipher>(aad, aad_size);
m_processed_aad_size += aad_size;
/* Check if we're done with aad. */
if (m_processed_aad_size == m_given_aad_size) {
/* Pad the aad to block size. */
this->ProcessPadding();
/* Update our state. */
if (m_given_data_size > 0) {
m_state = State_ProcessingData;
} else {
m_state = State_DataInputDone;
}
}
}
size_t UpdateEncryption(void *dst, size_t dst_size, const void *src, size_t src_size) {
/* Check pre-conditions. */
AMS_ASSERT(m_state == State_ProcessingData);
AMS_ASSERT(m_processed_data_size + static_cast<s64>(src_size) <= m_given_data_size);
AMS_ASSERT(dst_size >= src_size);
/* Update mac on decrypted data. */
m_cbc_mac_impl.template Update<BlockCipher>(src, src_size);
/* Encrypt. */
const size_t processed = m_ctr_mode_impl.Update(dst, dst_size, src, src_size);
m_processed_data_size += src_size;
/* Check if we're done with data. */
if (m_processed_data_size == m_given_data_size) {
/* Pad the data to block size. */
this->ProcessPadding();
m_state = State_DataInputDone;
}
return processed;
}
size_t UpdateDecryption(void *dst, size_t dst_size, const void *src, size_t src_size) {
/* Check pre-conditions. */
AMS_ASSERT(m_state == State_ProcessingData);
AMS_ASSERT(m_processed_data_size + static_cast<s64>(src_size) <= m_given_data_size);
AMS_ASSERT(dst_size >= src_size);
/* Decrypt. */
const size_t processed = m_ctr_mode_impl.Update(dst, dst_size, src, src_size);
m_processed_data_size += src_size;
/* Update mac on decrypted data. */
m_cbc_mac_impl.template Update<BlockCipher>(dst, dst_size);
/* Check if we're done with data. */
if (m_processed_data_size == m_given_data_size) {
/* Pad the data to block size. */
this->ProcessPadding();
m_state = State_DataInputDone;
}
return processed;
}
void GetMac(void *mac, size_t mac_size) {
/* Check pre-conditions. */
AMS_ASSERT(m_state == State_DataInputDone || m_state == State_Done);
AMS_ASSERT(mac_size >= m_given_mac_size);
AMS_UNUSED(mac_size);
/* Generate the mac, if we haven't already. */
if (m_state == State_DataInputDone) {
this->GenerateMac();
m_state = State_Done;
}
/* Copy out the mac. */
std::memcpy(mac, m_mac, m_given_mac_size);
}
private:
void MakeInitialCounter(void *dst, const void *nonce, size_t nonce_size) {
/* Clear the counter. */
u8 *ctr = static_cast<u8 *>(dst);
std::memset(ctr, 0, BlockSize);
/* Set the nonce. */
ctr[0] = (((BlockSize - 1 - nonce_size) & 0xFF) - 1) & 0x07;
std::memcpy(ctr + 1, nonce, nonce_size);
}
void MakeHeaderBlock(void *dst, const void *nonce, size_t nonce_size, s64 aad_size, s64 data_size, size_t mac_size) {
/* Clear the block. */
u8 *hdr = static_cast<u8 *>(dst);
std::memset(hdr, 0, BlockSize);
/* Encode the flags. */
hdr[0] = (((BlockSize - 1 - nonce_size) & 0xFF) - 1) & 0x07;
hdr[0] |= (((mac_size - 2) / 2) & 0x07) << 3;
hdr[0] |= (aad_size > 0) ? 0x40 : 0x00;
/* Encode the data size. */
for (size_t i = 0; i < sizeof(s64); ++i) {
hdr[BlockSize - 1 - i] = static_cast<u64>(data_size) >> (BITSIZEOF(u8) * i);
}
/* Copy the nonce. */
std::memcpy(hdr + 1, nonce, nonce_size);
}
void ProcessEncodedAadSize() {
u8 encoded_aad[10];
size_t encoded_aad_size;
if (m_given_aad_size < ((1 << 16) - (1 << 8))) {
encoded_aad[0] = (m_given_aad_size >> (BITSIZEOF(u8) * 1)) & 0xFF;
encoded_aad[1] = (m_given_aad_size >> (BITSIZEOF(u8) * 0)) & 0xFF;
encoded_aad_size = 2;
} else if (m_given_aad_size <= 0xFFFFFFFFu) {
encoded_aad[0] = 0xFF;
encoded_aad[1] = 0xFE;
encoded_aad[2] = (m_given_aad_size >> (BITSIZEOF(u8) * 3)) & 0xFF;
encoded_aad[3] = (m_given_aad_size >> (BITSIZEOF(u8) * 2)) & 0xFF;
encoded_aad[4] = (m_given_aad_size >> (BITSIZEOF(u8) * 1)) & 0xFF;
encoded_aad[5] = (m_given_aad_size >> (BITSIZEOF(u8) * 0)) & 0xFF;
encoded_aad_size = 6;
} else {
encoded_aad[0] = 0xFF;
encoded_aad[1] = 0xFE;
encoded_aad[2] = (static_cast<u64>(m_given_aad_size) >> (BITSIZEOF(u8) * 7)) & 0xFF;
encoded_aad[3] = (static_cast<u64>(m_given_aad_size) >> (BITSIZEOF(u8) * 6)) & 0xFF;
encoded_aad[4] = (static_cast<u64>(m_given_aad_size) >> (BITSIZEOF(u8) * 5)) & 0xFF;
encoded_aad[5] = (static_cast<u64>(m_given_aad_size) >> (BITSIZEOF(u8) * 4)) & 0xFF;
encoded_aad[6] = (static_cast<u64>(m_given_aad_size) >> (BITSIZEOF(u8) * 3)) & 0xFF;
encoded_aad[7] = (static_cast<u64>(m_given_aad_size) >> (BITSIZEOF(u8) * 2)) & 0xFF;
encoded_aad[8] = (static_cast<u64>(m_given_aad_size) >> (BITSIZEOF(u8) * 1)) & 0xFF;
encoded_aad[9] = (static_cast<u64>(m_given_aad_size) >> (BITSIZEOF(u8) * 0)) & 0xFF;
encoded_aad_size = 10;
}
m_cbc_mac_impl.template Update<BlockCipher>(encoded_aad, encoded_aad_size);
}
void ProcessPadding() {
/* Process any remaining padding. */
if (const auto buffered = m_cbc_mac_impl.GetBufferedDataSize(); buffered > 0) {
u8 zeros[BlockSize] = {};
m_cbc_mac_impl.template Update<BlockCipher>(zeros, BlockSize - buffered);
}
}
void GenerateMac() {
/* Get the cbc mac. */
u8 tmp[BlockSize];
m_cbc_mac_impl.GetMac(tmp, BlockSize);
/* Xor into our mac. */
for (size_t i = 0; i < BlockSize; ++i) {
m_mac[i] ^= tmp[i];
}
}
};
}