kern: refactor to use m_ for member variables

This commit is contained in:
Michael Scire 2020-12-17 17:18:47 -08:00 committed by SciresM
parent 0bf2ade76f
commit 968f50bc07
135 changed files with 3727 additions and 3734 deletions

View file

@ -60,7 +60,7 @@ namespace ams::kern {
MESOSPHERE_ASSERT(0 <= phys_core && phys_core < static_cast<s32>(cpu::NumCores));
/* First, clear the TLS address. */
this->tls_address = Null<KProcessAddress>;
m_tls_address = Null<KProcessAddress>;
const uintptr_t kern_stack_top_address = reinterpret_cast<uintptr_t>(kern_stack_top);
@ -94,73 +94,73 @@ namespace ams::kern {
}
/* Set the ideal core ID and affinity mask. */
this->virtual_ideal_core_id = virt_core;
this->physical_ideal_core_id = phys_core;
this->virtual_affinity_mask = (static_cast<u64>(1) << virt_core);
this->physical_affinity_mask.SetAffinity(phys_core, true);
m_virtual_ideal_core_id = virt_core;
m_physical_ideal_core_id = phys_core;
m_virtual_affinity_mask = (static_cast<u64>(1) << virt_core);
m_physical_affinity_mask.SetAffinity(phys_core, true);
/* Set the thread state. */
this->thread_state = (type == ThreadType_Main) ? ThreadState_Runnable : ThreadState_Initialized;
m_thread_state = (type == ThreadType_Main) ? ThreadState_Runnable : ThreadState_Initialized;
/* Set TLS address and TLS heap address. */
/* NOTE: Nintendo wrote TLS address above already, but official code really does write tls address twice. */
this->tls_address = 0;
this->tls_heap_address = 0;
m_tls_address = 0;
m_tls_heap_address = 0;
/* Set parent and condvar tree. */
this->parent = nullptr;
this->condvar_tree = nullptr;
m_parent = nullptr;
m_condvar_tree = nullptr;
/* Set sync booleans. */
this->signaled = false;
this->termination_requested = false;
this->wait_cancelled = false;
this->cancellable = false;
m_signaled = false;
m_termination_requested = false;
m_wait_cancelled = false;
m_cancellable = false;
/* Set core ID and wait result. */
this->core_id = phys_core;
this->wait_result = svc::ResultNoSynchronizationObject();
m_core_id = phys_core;
m_wait_result = svc::ResultNoSynchronizationObject();
/* Set the stack top. */
this->kernel_stack_top = kern_stack_top;
m_kernel_stack_top = kern_stack_top;
/* Set priorities. */
this->priority = prio;
this->base_priority = prio;
m_priority = prio;
m_base_priority = prio;
/* Set sync object and waiting lock to null. */
this->synced_object = nullptr;
this->waiting_lock = nullptr;
m_synced_object = nullptr;
m_waiting_lock = nullptr;
/* Initialize sleeping queue. */
this->sleeping_queue = nullptr;
m_sleeping_queue = nullptr;
/* Set suspend flags. */
this->suspend_request_flags = 0;
this->suspend_allowed_flags = ThreadState_SuspendFlagMask;
m_suspend_request_flags = 0;
m_suspend_allowed_flags = ThreadState_SuspendFlagMask;
/* We're neither debug attached, nor are we nesting our priority inheritance. */
this->debug_attached = false;
this->priority_inheritance_count = 0;
m_debug_attached = false;
m_priority_inheritance_count = 0;
/* We haven't been scheduled, and we have done no light IPC. */
this->schedule_count = -1;
this->last_scheduled_tick = 0;
this->light_ipc_data = nullptr;
m_schedule_count = -1;
m_last_scheduled_tick = 0;
m_light_ipc_data = nullptr;
/* We're not waiting for a lock, and we haven't disabled migration. */
this->lock_owner = nullptr;
this->num_core_migration_disables = 0;
m_lock_owner = nullptr;
m_num_core_migration_disables = 0;
/* We have no waiters, but we do have an entrypoint. */
this->num_kernel_waiters = 0;
m_num_kernel_waiters = 0;
/* Set our current core id. */
this->current_core_id = phys_core;
m_current_core_id = phys_core;
/* We haven't released our resource limit hint, and we've spent no time on the cpu. */
this->resource_limit_release_hint = 0;
this->cpu_time = 0;
m_resource_limit_release_hint = 0;
m_cpu_time = 0;
/* Setup our kernel stack. */
if (type != ThreadType_Main) {
@ -172,45 +172,45 @@ namespace ams::kern {
/* Setup the TLS, if needed. */
if (type == ThreadType_User) {
R_TRY(owner->CreateThreadLocalRegion(std::addressof(this->tls_address)));
this->tls_heap_address = owner->GetThreadLocalRegionPointer(this->tls_address);
std::memset(this->tls_heap_address, 0, ams::svc::ThreadLocalRegionSize);
R_TRY(owner->CreateThreadLocalRegion(std::addressof(m_tls_address)));
m_tls_heap_address = owner->GetThreadLocalRegionPointer(m_tls_address);
std::memset(m_tls_heap_address, 0, ams::svc::ThreadLocalRegionSize);
}
/* Set parent, if relevant. */
if (owner != nullptr) {
this->parent = owner;
this->parent->Open();
this->parent->IncrementThreadCount();
m_parent = owner;
m_parent->Open();
m_parent->IncrementThreadCount();
}
/* Initialize thread context. */
constexpr bool IsDefault64Bit = sizeof(uintptr_t) == sizeof(u64);
const bool is_64_bit = this->parent ? this->parent->Is64Bit() : IsDefault64Bit;
const bool is_64_bit = m_parent ? m_parent->Is64Bit() : IsDefault64Bit;
const bool is_user = (type == ThreadType_User);
const bool is_main = (type == ThreadType_Main);
this->thread_context.Initialize(reinterpret_cast<uintptr_t>(func), reinterpret_cast<uintptr_t>(this->GetStackTop()), GetInteger(user_stack_top), arg, is_user, is_64_bit, is_main);
m_thread_context.Initialize(reinterpret_cast<uintptr_t>(func), reinterpret_cast<uintptr_t>(this->GetStackTop()), GetInteger(user_stack_top), arg, is_user, is_64_bit, is_main);
/* Setup the stack parameters. */
StackParameters &sp = this->GetStackParameters();
if (this->parent != nullptr) {
this->parent->CopySvcPermissionsTo(sp);
if (m_parent != nullptr) {
m_parent->CopySvcPermissionsTo(sp);
}
sp.context = std::addressof(this->thread_context);
sp.context = std::addressof(m_thread_context);
sp.cur_thread = this;
sp.disable_count = 1;
this->SetInExceptionHandler();
/* Set thread ID. */
this->thread_id = s_next_thread_id++;
m_thread_id = s_next_thread_id++;
/* We initialized! */
this->initialized = true;
m_initialized = true;
/* Register ourselves with our parent process. */
if (this->parent != nullptr) {
this->parent->RegisterThread(this);
if (this->parent->IsSuspended()) {
if (m_parent != nullptr) {
m_parent->RegisterThread(this);
if (m_parent->IsSuspended()) {
this->RequestSuspend(SuspendType_Process);
}
}
@ -276,42 +276,42 @@ namespace ams::kern {
MESOSPHERE_ASSERT_THIS();
/* If the thread has an owner process, unregister it. */
if (this->parent != nullptr) {
this->parent->UnregisterThread(this);
if (m_parent != nullptr) {
m_parent->UnregisterThread(this);
}
/* If the thread has a local region, delete it. */
if (this->tls_address != Null<KProcessAddress>) {
MESOSPHERE_R_ABORT_UNLESS(this->parent->DeleteThreadLocalRegion(this->tls_address));
if (m_tls_address != Null<KProcessAddress>) {
MESOSPHERE_R_ABORT_UNLESS(m_parent->DeleteThreadLocalRegion(m_tls_address));
}
/* Release any waiters. */
{
MESOSPHERE_ASSERT(this->lock_owner == nullptr);
MESOSPHERE_ASSERT(m_lock_owner == nullptr);
KScopedSchedulerLock sl;
auto it = this->waiter_list.begin();
while (it != this->waiter_list.end()) {
auto it = m_waiter_list.begin();
while (it != m_waiter_list.end()) {
/* The thread shouldn't be a kernel waiter. */
MESOSPHERE_ASSERT(!IsKernelAddressKey(it->GetAddressKey()));
it->SetLockOwner(nullptr);
it->SetSyncedObject(nullptr, svc::ResultInvalidState());
it->Wakeup();
it = this->waiter_list.erase(it);
it = m_waiter_list.erase(it);
}
}
/* Finalize the thread context. */
this->thread_context.Finalize();
m_thread_context.Finalize();
/* Cleanup the kernel stack. */
if (this->kernel_stack_top != nullptr) {
CleanupKernelStack(reinterpret_cast<uintptr_t>(this->kernel_stack_top));
if (m_kernel_stack_top != nullptr) {
CleanupKernelStack(reinterpret_cast<uintptr_t>(m_kernel_stack_top));
}
/* Decrement the parent process's thread count. */
if (this->parent != nullptr) {
this->parent->DecrementThreadCount();
if (m_parent != nullptr) {
m_parent->DecrementThreadCount();
}
/* Perform inherited finalization. */
@ -319,7 +319,7 @@ namespace ams::kern {
}
bool KThread::IsSignaled() const {
return this->signaled;
return m_signaled;
}
void KThread::Wakeup() {
@ -327,8 +327,8 @@ namespace ams::kern {
KScopedSchedulerLock sl;
if (this->GetState() == ThreadState_Waiting) {
if (this->sleeping_queue != nullptr) {
this->sleeping_queue->WakeupThread(this);
if (m_sleeping_queue != nullptr) {
m_sleeping_queue->WakeupThread(this);
} else {
this->SetState(ThreadState_Runnable);
}
@ -347,10 +347,10 @@ namespace ams::kern {
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
/* Release user exception and unpin, if relevant. */
if (this->parent != nullptr) {
this->parent->ReleaseUserException(this);
if (this->parent->GetPinnedThread(GetCurrentCoreId()) == this) {
this->parent->UnpinCurrentThread();
if (m_parent != nullptr) {
m_parent->ReleaseUserException(this);
if (m_parent->GetPinnedThread(GetCurrentCoreId()) == this) {
m_parent->UnpinCurrentThread();
}
}
@ -358,12 +358,12 @@ namespace ams::kern {
this->SetState(KThread::ThreadState_Terminated);
/* Clear the thread's status as running in parent. */
if (this->parent != nullptr) {
this->parent->ClearRunningThread(this);
if (m_parent != nullptr) {
m_parent->ClearRunningThread(this);
}
/* Signal. */
this->signaled = true;
m_signaled = true;
this->NotifyAvailable();
/* Call the on thread termination handler. */
@ -380,7 +380,7 @@ namespace ams::kern {
MESOSPHERE_ASSERT_THIS();
/* Ensure that the thread is not executing on any core. */
if (this->parent != nullptr) {
if (m_parent != nullptr) {
for (size_t i = 0; i < cpu::NumCores; ++i) {
KThread *core_thread;
do {
@ -406,43 +406,43 @@ namespace ams::kern {
this->GetStackParameters().is_pinned = true;
/* Disable core migration. */
MESOSPHERE_ASSERT(this->num_core_migration_disables == 0);
MESOSPHERE_ASSERT(m_num_core_migration_disables == 0);
{
++this->num_core_migration_disables;
++m_num_core_migration_disables;
/* Save our ideal state to restore when we're unpinned. */
this->original_physical_ideal_core_id = this->physical_ideal_core_id;
this->original_physical_affinity_mask = this->physical_affinity_mask;
m_original_physical_ideal_core_id = m_physical_ideal_core_id;
m_original_physical_affinity_mask = m_physical_affinity_mask;
/* Bind ourselves to this core. */
const s32 active_core = this->GetActiveCore();
const s32 current_core = GetCurrentCoreId();
this->SetActiveCore(current_core);
this->physical_ideal_core_id = current_core;
this->physical_affinity_mask.SetAffinityMask(1ul << current_core);
m_physical_ideal_core_id = current_core;
m_physical_affinity_mask.SetAffinityMask(1ul << current_core);
if (active_core != current_core || this->physical_affinity_mask.GetAffinityMask() != this->original_physical_affinity_mask.GetAffinityMask()) {
KScheduler::OnThreadAffinityMaskChanged(this, this->original_physical_affinity_mask, active_core);
if (active_core != current_core || m_physical_affinity_mask.GetAffinityMask() != m_original_physical_affinity_mask.GetAffinityMask()) {
KScheduler::OnThreadAffinityMaskChanged(this, m_original_physical_affinity_mask, active_core);
}
}
/* Disallow performing thread suspension. */
{
/* Update our allow flags. */
this->suspend_allowed_flags &= ~(1 << (SuspendType_Thread + ThreadState_SuspendShift));
m_suspend_allowed_flags &= ~(1 << (SuspendType_Thread + ThreadState_SuspendShift));
/* Update our state. */
const ThreadState old_state = this->thread_state;
this->thread_state = static_cast<ThreadState>(this->GetSuspendFlags() | (old_state & ThreadState_Mask));
if (this->thread_state != old_state) {
const ThreadState old_state = m_thread_state;
m_thread_state = static_cast<ThreadState>(this->GetSuspendFlags() | (old_state & ThreadState_Mask));
if (m_thread_state != old_state) {
KScheduler::OnThreadStateChanged(this, old_state);
}
}
/* Update our SVC access permissions. */
MESOSPHERE_ASSERT(this->parent != nullptr);
this->parent->CopyPinnedSvcPermissionsTo(this->GetStackParameters());
MESOSPHERE_ASSERT(m_parent != nullptr);
m_parent->CopyPinnedSvcPermissionsTo(this->GetStackParameters());
}
void KThread::Unpin() {
@ -453,24 +453,24 @@ namespace ams::kern {
this->GetStackParameters().is_pinned = false;
/* Enable core migration. */
MESOSPHERE_ASSERT(this->num_core_migration_disables == 1);
MESOSPHERE_ASSERT(m_num_core_migration_disables == 1);
{
--this->num_core_migration_disables;
--m_num_core_migration_disables;
/* Restore our original state. */
const KAffinityMask old_mask = this->physical_affinity_mask;
const KAffinityMask old_mask = m_physical_affinity_mask;
this->physical_ideal_core_id = this->original_physical_ideal_core_id;
this->physical_affinity_mask = this->original_physical_affinity_mask;
m_physical_ideal_core_id = m_original_physical_ideal_core_id;
m_physical_affinity_mask = m_original_physical_affinity_mask;
if (this->physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) {
if (m_physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) {
const s32 active_core = this->GetActiveCore();
if (!this->physical_affinity_mask.GetAffinity(active_core)) {
if (this->physical_ideal_core_id >= 0) {
this->SetActiveCore(this->physical_ideal_core_id);
if (!m_physical_affinity_mask.GetAffinity(active_core)) {
if (m_physical_ideal_core_id >= 0) {
this->SetActiveCore(m_physical_ideal_core_id);
} else {
this->SetActiveCore(BITSIZEOF(unsigned long long) - 1 - __builtin_clzll(this->physical_affinity_mask.GetAffinityMask()));
this->SetActiveCore(BITSIZEOF(unsigned long long) - 1 - __builtin_clzll(m_physical_affinity_mask.GetAffinityMask()));
}
}
KScheduler::OnThreadAffinityMaskChanged(this, old_mask, active_core);
@ -481,23 +481,23 @@ namespace ams::kern {
{
/* Update our allow flags. */
if (!this->IsTerminationRequested()) {
this->suspend_allowed_flags |= (1 << (SuspendType_Thread + ThreadState_SuspendShift));
m_suspend_allowed_flags |= (1 << (SuspendType_Thread + ThreadState_SuspendShift));
}
/* Update our state. */
const ThreadState old_state = this->thread_state;
this->thread_state = static_cast<ThreadState>(this->GetSuspendFlags() | (old_state & ThreadState_Mask));
if (this->thread_state != old_state) {
const ThreadState old_state = m_thread_state;
m_thread_state = static_cast<ThreadState>(this->GetSuspendFlags() | (old_state & ThreadState_Mask));
if (m_thread_state != old_state) {
KScheduler::OnThreadStateChanged(this, old_state);
}
}
/* Update our SVC access permissions. */
MESOSPHERE_ASSERT(this->parent != nullptr);
this->parent->CopyUnpinnedSvcPermissionsTo(this->GetStackParameters());
MESOSPHERE_ASSERT(m_parent != nullptr);
m_parent->CopyUnpinnedSvcPermissionsTo(this->GetStackParameters());
/* Resume any threads that began waiting on us while we were pinned. */
for (auto it = this->pinned_waiter_list.begin(); it != this->pinned_waiter_list.end(); ++it) {
for (auto it = m_pinned_waiter_list.begin(); it != m_pinned_waiter_list.end(); ++it) {
if (it->GetState() == ThreadState_Waiting) {
it->SetState(ThreadState_Runnable);
}
@ -509,19 +509,19 @@ namespace ams::kern {
MESOSPHERE_ASSERT(this == GetCurrentThreadPointer());
KScopedSchedulerLock sl;
MESOSPHERE_ASSERT(this->num_core_migration_disables >= 0);
if ((this->num_core_migration_disables++) == 0) {
MESOSPHERE_ASSERT(m_num_core_migration_disables >= 0);
if ((m_num_core_migration_disables++) == 0) {
/* Save our ideal state to restore when we can migrate again. */
this->original_physical_ideal_core_id = this->physical_ideal_core_id;
this->original_physical_affinity_mask = this->physical_affinity_mask;
m_original_physical_ideal_core_id = m_physical_ideal_core_id;
m_original_physical_affinity_mask = m_physical_affinity_mask;
/* Bind ourselves to this core. */
const s32 active_core = this->GetActiveCore();
this->physical_ideal_core_id = active_core;
this->physical_affinity_mask.SetAffinityMask(1ul << active_core);
m_physical_ideal_core_id = active_core;
m_physical_affinity_mask.SetAffinityMask(1ul << active_core);
if (this->physical_affinity_mask.GetAffinityMask() != this->original_physical_affinity_mask.GetAffinityMask()) {
KScheduler::OnThreadAffinityMaskChanged(this, this->original_physical_affinity_mask, active_core);
if (m_physical_affinity_mask.GetAffinityMask() != m_original_physical_affinity_mask.GetAffinityMask()) {
KScheduler::OnThreadAffinityMaskChanged(this, m_original_physical_affinity_mask, active_core);
}
}
}
@ -531,22 +531,22 @@ namespace ams::kern {
MESOSPHERE_ASSERT(this == GetCurrentThreadPointer());
KScopedSchedulerLock sl;
MESOSPHERE_ASSERT(this->num_core_migration_disables > 0);
if ((--this->num_core_migration_disables) == 0) {
const KAffinityMask old_mask = this->physical_affinity_mask;
MESOSPHERE_ASSERT(m_num_core_migration_disables > 0);
if ((--m_num_core_migration_disables) == 0) {
const KAffinityMask old_mask = m_physical_affinity_mask;
/* Restore our ideals. */
this->physical_ideal_core_id = this->original_physical_ideal_core_id;
this->physical_affinity_mask = this->original_physical_affinity_mask;
m_physical_ideal_core_id = m_original_physical_ideal_core_id;
m_physical_affinity_mask = m_original_physical_affinity_mask;
if (this->physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) {
if (m_physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) {
const s32 active_core = this->GetActiveCore();
if (!this->physical_affinity_mask.GetAffinity(active_core)) {
if (this->physical_ideal_core_id >= 0) {
this->SetActiveCore(this->physical_ideal_core_id);
if (!m_physical_affinity_mask.GetAffinity(active_core)) {
if (m_physical_ideal_core_id >= 0) {
this->SetActiveCore(m_physical_ideal_core_id);
} else {
this->SetActiveCore(BITSIZEOF(unsigned long long) - 1 - __builtin_clzll(this->physical_affinity_mask.GetAffinityMask()));
this->SetActiveCore(BITSIZEOF(unsigned long long) - 1 - __builtin_clzll(m_physical_affinity_mask.GetAffinityMask()));
}
}
KScheduler::OnThreadAffinityMaskChanged(this, old_mask, active_core);
@ -560,8 +560,8 @@ namespace ams::kern {
KScopedSchedulerLock sl;
/* Get the virtual mask. */
*out_ideal_core = this->virtual_ideal_core_id;
*out_affinity_mask = this->virtual_affinity_mask;
*out_ideal_core = m_virtual_ideal_core_id;
*out_affinity_mask = m_virtual_affinity_mask;
}
return ResultSuccess();
@ -571,15 +571,15 @@ namespace ams::kern {
MESOSPHERE_ASSERT_THIS();
{
KScopedSchedulerLock sl;
MESOSPHERE_ASSERT(this->num_core_migration_disables >= 0);
MESOSPHERE_ASSERT(m_num_core_migration_disables >= 0);
/* Select between core mask and original core mask. */
if (this->num_core_migration_disables == 0) {
*out_ideal_core = this->physical_ideal_core_id;
*out_affinity_mask = this->physical_affinity_mask.GetAffinityMask();
if (m_num_core_migration_disables == 0) {
*out_ideal_core = m_physical_ideal_core_id;
*out_affinity_mask = m_physical_affinity_mask.GetAffinityMask();
} else {
*out_ideal_core = this->original_physical_ideal_core_id;
*out_affinity_mask = this->original_physical_affinity_mask.GetAffinityMask();
*out_ideal_core = m_original_physical_ideal_core_id;
*out_affinity_mask = m_original_physical_affinity_mask.GetAffinityMask();
}
}
@ -588,25 +588,25 @@ namespace ams::kern {
Result KThread::SetCoreMask(int32_t core_id, u64 v_affinity_mask) {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(this->parent != nullptr);
MESOSPHERE_ASSERT(m_parent != nullptr);
MESOSPHERE_ASSERT(v_affinity_mask != 0);
KScopedLightLock lk(this->activity_pause_lock);
KScopedLightLock lk(m_activity_pause_lock);
/* Set the core mask. */
u64 p_affinity_mask = 0;
{
KScopedSchedulerLock sl;
MESOSPHERE_ASSERT(this->num_core_migration_disables >= 0);
MESOSPHERE_ASSERT(m_num_core_migration_disables >= 0);
/* If the core id is no-update magic, preserve the ideal core id. */
if (core_id == ams::svc::IdealCoreNoUpdate) {
core_id = this->virtual_ideal_core_id;
core_id = m_virtual_ideal_core_id;
R_UNLESS(((1ul << core_id) & v_affinity_mask) != 0, svc::ResultInvalidCombination());
}
/* Set the virtual core/affinity mask. */
this->virtual_ideal_core_id = core_id;
this->virtual_affinity_mask = v_affinity_mask;
m_virtual_ideal_core_id = core_id;
m_virtual_affinity_mask = v_affinity_mask;
/* Translate the virtual core to a physical core. */
if (core_id >= 0) {
@ -621,26 +621,26 @@ namespace ams::kern {
}
/* If we haven't disabled migration, perform an affinity change. */
if (this->num_core_migration_disables == 0) {
const KAffinityMask old_mask = this->physical_affinity_mask;
if (m_num_core_migration_disables == 0) {
const KAffinityMask old_mask = m_physical_affinity_mask;
/* Set our new ideals. */
this->physical_ideal_core_id = core_id;
this->physical_affinity_mask.SetAffinityMask(p_affinity_mask);
m_physical_ideal_core_id = core_id;
m_physical_affinity_mask.SetAffinityMask(p_affinity_mask);
if (this->physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) {
if (m_physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) {
const s32 active_core = this->GetActiveCore();
if (active_core >= 0 && !this->physical_affinity_mask.GetAffinity(active_core)) {
const s32 new_core = this->physical_ideal_core_id >= 0 ? this->physical_ideal_core_id : BITSIZEOF(unsigned long long) - 1 - __builtin_clzll(this->physical_affinity_mask.GetAffinityMask());
if (active_core >= 0 && !m_physical_affinity_mask.GetAffinity(active_core)) {
const s32 new_core = m_physical_ideal_core_id >= 0 ? m_physical_ideal_core_id : BITSIZEOF(unsigned long long) - 1 - __builtin_clzll(m_physical_affinity_mask.GetAffinityMask());
this->SetActiveCore(new_core);
}
KScheduler::OnThreadAffinityMaskChanged(this, old_mask, active_core);
}
} else {
/* Otherwise, we edit the original affinity for restoration later. */
this->original_physical_ideal_core_id = core_id;
this->original_physical_affinity_mask.SetAffinityMask(p_affinity_mask);
m_original_physical_ideal_core_id = core_id;
m_original_physical_affinity_mask.SetAffinityMask(p_affinity_mask);
}
}
@ -679,7 +679,7 @@ namespace ams::kern {
thread_is_pinned = true;
/* Wait until the thread isn't pinned any more. */
this->pinned_waiter_list.push_back(GetCurrentThread());
m_pinned_waiter_list.push_back(GetCurrentThread());
GetCurrentThread().SetState(ThreadState_Waiting);
} else {
/* If the thread isn't pinned, release the scheduler lock and retry until it's not current. */
@ -694,7 +694,7 @@ namespace ams::kern {
KScopedSchedulerLock sl;
/* Remove from the list. */
this->pinned_waiter_list.erase(this->pinned_waiter_list.iterator_to(GetCurrentThread()));
m_pinned_waiter_list.erase(m_pinned_waiter_list.iterator_to(GetCurrentThread()));
}
}
@ -708,7 +708,7 @@ namespace ams::kern {
KScopedSchedulerLock sl;
/* Change our base priority. */
this->base_priority = priority;
m_base_priority = priority;
/* Perform a priority restoration. */
RestorePriority(this);
@ -720,9 +720,9 @@ namespace ams::kern {
KScopedSchedulerLock sl;
/* Change both our priorities to the idle thread priority. */
const s32 old_priority = this->priority;
this->priority = IdleThreadPriority;
this->base_priority = IdleThreadPriority;
const s32 old_priority = m_priority;
m_priority = IdleThreadPriority;
m_base_priority = IdleThreadPriority;
KScheduler::OnThreadPriorityChanged(this, old_priority);
return ResultSuccess();
@ -734,7 +734,7 @@ namespace ams::kern {
KScopedSchedulerLock lk;
/* Note the request in our flags. */
this->suspend_request_flags |= (1u << (ThreadState_SuspendShift + type));
m_suspend_request_flags |= (1u << (ThreadState_SuspendShift + type));
/* Try to perform the suspend. */
this->TrySuspend();
@ -746,12 +746,12 @@ namespace ams::kern {
KScopedSchedulerLock sl;
/* Clear the request in our flags. */
this->suspend_request_flags &= ~(1u << (ThreadState_SuspendShift + type));
m_suspend_request_flags &= ~(1u << (ThreadState_SuspendShift + type));
/* Update our state. */
const ThreadState old_state = this->thread_state;
this->thread_state = static_cast<ThreadState>(this->GetSuspendFlags() | (old_state & ThreadState_Mask));
if (this->thread_state != old_state) {
const ThreadState old_state = m_thread_state;
m_thread_state = static_cast<ThreadState>(this->GetSuspendFlags() | (old_state & ThreadState_Mask));
if (m_thread_state != old_state) {
KScheduler::OnThreadStateChanged(this, old_state);
}
}
@ -762,18 +762,18 @@ namespace ams::kern {
KScopedSchedulerLock sl;
/* Check if we're waiting and cancellable. */
if (this->GetState() == ThreadState_Waiting && this->cancellable) {
if (this->sleeping_queue != nullptr) {
this->sleeping_queue->WakeupThread(this);
this->wait_cancelled = true;
if (this->GetState() == ThreadState_Waiting && m_cancellable) {
if (m_sleeping_queue != nullptr) {
m_sleeping_queue->WakeupThread(this);
m_wait_cancelled = true;
} else {
this->SetSyncedObject(nullptr, svc::ResultCancelled());
this->SetState(ThreadState_Runnable);
this->wait_cancelled = false;
m_wait_cancelled = false;
}
} else {
/* Otherwise, note that we cancelled a wait. */
this->wait_cancelled = true;
m_wait_cancelled = true;
}
}
@ -798,8 +798,8 @@ namespace ams::kern {
MESOSPHERE_ASSERT(this->IsSuspendRequested());
/* Set our suspend flags in state. */
const auto old_state = this->thread_state;
this->thread_state = static_cast<ThreadState>(this->GetSuspendFlags() | (old_state & ThreadState_Mask));
const auto old_state = m_thread_state;
m_thread_state = static_cast<ThreadState>(this->GetSuspendFlags() | (old_state & ThreadState_Mask));
/* Note the state change in scheduler. */
KScheduler::OnThreadStateChanged(this, old_state);
@ -810,8 +810,8 @@ namespace ams::kern {
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
/* Clear our suspend flags in state. */
const auto old_state = this->thread_state;
this->thread_state = static_cast<ThreadState>(old_state & ThreadState_Mask);
const auto old_state = m_thread_state;
m_thread_state = static_cast<ThreadState>(old_state & ThreadState_Mask);
/* Note the state change in scheduler. */
KScheduler::OnThreadStateChanged(this, old_state);
@ -819,10 +819,10 @@ namespace ams::kern {
size_t KThread::GetKernelStackUsage() const {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(this->kernel_stack_top != nullptr);
MESOSPHERE_ASSERT(m_kernel_stack_top != nullptr);
#if defined(MESOSPHERE_ENABLE_KERNEL_STACK_USAGE)
const u8 *stack = static_cast<const u8 *>(this->kernel_stack_top) - PageSize;
const u8 *stack = static_cast<const u8 *>(m_kernel_stack_top) - PageSize;
size_t i;
for (i = 0; i < PageSize; ++i) {
@ -839,7 +839,7 @@ namespace ams::kern {
Result KThread::SetActivity(ams::svc::ThreadActivity activity) {
/* Lock ourselves. */
KScopedLightLock lk(this->activity_pause_lock);
KScopedLightLock lk(m_activity_pause_lock);
/* Set the activity. */
{
@ -889,7 +889,7 @@ namespace ams::kern {
thread_is_current = false;
/* Wait until the thread isn't pinned any more. */
this->pinned_waiter_list.push_back(GetCurrentThread());
m_pinned_waiter_list.push_back(GetCurrentThread());
GetCurrentThread().SetState(ThreadState_Waiting);
} else {
/* Check if the thread is currently running. */
@ -911,7 +911,7 @@ namespace ams::kern {
KScopedSchedulerLock sl;
/* Remove from the list. */
this->pinned_waiter_list.erase(this->pinned_waiter_list.iterator_to(GetCurrentThread()));
m_pinned_waiter_list.erase(m_pinned_waiter_list.iterator_to(GetCurrentThread()));
}
}
@ -920,7 +920,7 @@ namespace ams::kern {
Result KThread::GetThreadContext3(ams::svc::ThreadContext *out) {
/* Lock ourselves. */
KScopedLightLock lk(this->activity_pause_lock);
KScopedLightLock lk(m_activity_pause_lock);
/* Get the context. */
{
@ -944,8 +944,8 @@ namespace ams::kern {
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
/* Find the right spot to insert the waiter. */
auto it = this->waiter_list.begin();
while (it != this->waiter_list.end()) {
auto it = m_waiter_list.begin();
while (it != m_waiter_list.end()) {
if (it->GetPriority() > thread->GetPriority()) {
break;
}
@ -954,11 +954,11 @@ namespace ams::kern {
/* Keep track of how many kernel waiters we have. */
if (IsKernelAddressKey(thread->GetAddressKey())) {
MESOSPHERE_ABORT_UNLESS((this->num_kernel_waiters++) >= 0);
MESOSPHERE_ABORT_UNLESS((m_num_kernel_waiters++) >= 0);
}
/* Insert the waiter. */
this->waiter_list.insert(it, *thread);
m_waiter_list.insert(it, *thread);
thread->SetLockOwner(this);
}
@ -968,11 +968,11 @@ namespace ams::kern {
/* Keep track of how many kernel waiters we have. */
if (IsKernelAddressKey(thread->GetAddressKey())) {
MESOSPHERE_ABORT_UNLESS((this->num_kernel_waiters--) > 0);
MESOSPHERE_ABORT_UNLESS((m_num_kernel_waiters--) > 0);
}
/* Remove the waiter. */
this->waiter_list.erase(this->waiter_list.iterator_to(*thread));
m_waiter_list.erase(m_waiter_list.iterator_to(*thread));
thread->SetLockOwner(nullptr);
}
@ -983,7 +983,7 @@ namespace ams::kern {
/* We want to inherit priority where possible. */
s32 new_priority = thread->GetBasePriority();
if (thread->HasWaiters()) {
new_priority = std::min(new_priority, thread->waiter_list.front().GetPriority());
new_priority = std::min(new_priority, thread->m_waiter_list.front().GetPriority());
}
/* If the priority we would inherit is not different from ours, don't do anything. */
@ -1039,16 +1039,16 @@ namespace ams::kern {
s32 num_waiters = 0;
KThread *next_lock_owner = nullptr;
auto it = this->waiter_list.begin();
while (it != this->waiter_list.end()) {
auto it = m_waiter_list.begin();
while (it != m_waiter_list.end()) {
if (it->GetAddressKey() == key) {
KThread *thread = std::addressof(*it);
/* Keep track of how many kernel waiters we have. */
if (IsKernelAddressKey(thread->GetAddressKey())) {
MESOSPHERE_ABORT_UNLESS((this->num_kernel_waiters--) > 0);
MESOSPHERE_ABORT_UNLESS((m_num_kernel_waiters--) > 0);
}
it = this->waiter_list.erase(it);
it = m_waiter_list.erase(it);
/* Update the next lock owner. */
if (next_lock_owner == nullptr) {
@ -1117,9 +1117,9 @@ namespace ams::kern {
KDebug::OnExitThread(this);
/* Release the thread resource hint from parent. */
if (this->parent != nullptr) {
this->parent->ReleaseResource(ams::svc::LimitableResource_ThreadCountMax, 0, 1);
this->resource_limit_release_hint = true;
if (m_parent != nullptr) {
m_parent->ReleaseResource(ams::svc::LimitableResource_ThreadCountMax, 0, 1);
m_resource_limit_release_hint = true;
}
/* Perform termination. */
@ -1127,7 +1127,7 @@ namespace ams::kern {
KScopedSchedulerLock sl;
/* Disallow all suspension. */
this->suspend_allowed_flags = 0;
m_suspend_allowed_flags = 0;
/* Start termination. */
this->StartTermination();
@ -1162,14 +1162,14 @@ namespace ams::kern {
const bool first_request = [&] ALWAYS_INLINE_LAMBDA () -> bool {
/* Perform an atomic compare-and-swap from false to true. */
bool expected = false;
return this->termination_requested.compare_exchange_strong(expected, true);
return m_termination_requested.compare_exchange_strong(expected, true);
}();
/* If this is the first request, start termination procedure. */
if (first_request) {
/* If the thread is in initialized state, just change state to terminated. */
if (this->GetState() == ThreadState_Initialized) {
this->thread_state = ThreadState_Terminated;
m_thread_state = ThreadState_Terminated;
return ThreadState_Terminated;
}
@ -1178,7 +1178,7 @@ namespace ams::kern {
/* If the thread is suspended, continue it. */
if (this->IsSuspended()) {
this->suspend_allowed_flags = 0;
m_suspend_allowed_flags = 0;
this->Continue();
}
@ -1189,7 +1189,7 @@ namespace ams::kern {
/* If the thread is runnable, send a termination interrupt to other cores. */
if (this->GetState() == ThreadState_Runnable) {
if (const u64 core_mask = this->physical_affinity_mask.GetAffinityMask() & ~(1ul << GetCurrentCoreId()); core_mask != 0) {
if (const u64 core_mask = m_physical_affinity_mask.GetAffinityMask() & ~(1ul << GetCurrentCoreId()); core_mask != 0) {
cpu::DataSynchronizationBarrier();
Kernel::GetInterruptManager().SendInterProcessorInterrupt(KInterruptName_ThreadTerminate, core_mask);
}
@ -1237,9 +1237,9 @@ namespace ams::kern {
KScopedSchedulerLock sl;
const ThreadState old_state = this->thread_state;
this->thread_state = static_cast<ThreadState>((old_state & ~ThreadState_Mask) | (state & ThreadState_Mask));
if (this->thread_state != old_state) {
const ThreadState old_state = m_thread_state;
m_thread_state = static_cast<ThreadState>((old_state & ~ThreadState_Mask) | (state & ThreadState_Mask));
if (m_thread_state != old_state) {
KScheduler::OnThreadStateChanged(this, old_state);
}
}
@ -1256,10 +1256,10 @@ namespace ams::kern {
/* Define helper object to find the thread. */
class IdObjectHelper : public KAutoObjectWithListContainer::ListType::value_type {
private:
u64 id;
u64 m_id;
public:
constexpr explicit IdObjectHelper(u64 id) : id(id) { /* ... */ }
virtual u64 GetId() const override { return this->id; }
constexpr explicit IdObjectHelper(u64 id) : m_id(id) { /* ... */ }
virtual u64 GetId() const override { return m_id; }
};
/* Find the object with the right id. */