libs: begin adding capacity for doing crypto on generic os (using externally-preset keys)

This commit is contained in:
Michael Scire 2022-03-07 09:21:13 -08:00 committed by SciresM
parent 6368d8063a
commit 706b8492fd
28 changed files with 1305 additions and 33 deletions

View file

@ -0,0 +1,499 @@
/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
#include <exosphere/pkg1.hpp>
namespace ams::spl::smc {
#define SMC_R_SUCCEEEDED(res) (res == smc::Result::Success)
#define SMC_R_FAILED(res) (res != smc::Result::Success)
#define SMC_R_TRY(res_expr) ({ const auto _tmp_r_try_rc = (res_expr); if (SMC_R_FAILED(_tmp_r_try_rc)) { return _tmp_r_try_rc; } })
#define SMC_R_UNLESS(cond, RES) ({ if (!(cond)) { return smc::Result::RES; }})
namespace {
enum SealKey {
SealKey_LoadAesKey = 0,
SealKey_DecryptDeviceUniqueData = 1,
SealKey_ImportLotusKey = 2,
SealKey_ImportEsDeviceKey = 3,
SealKey_ReencryptDeviceUniqueData = 4,
SealKey_ImportSslKey = 5,
SealKey_ImportEsClientCertKey = 6,
SealKey_Count,
};
enum KeyType {
KeyType_Default = 0,
KeyType_NormalOnly = 1,
KeyType_RecoveryOnly = 2,
KeyType_NormalAndRecovery = 3,
KeyType_Count,
};
struct GenerateAesKekOption {
using IsDeviceUnique = util::BitPack32::Field<0, 1, bool>;
using KeyTypeIndex = util::BitPack32::Field<1, 4, KeyType>;
using SealKeyIndex = util::BitPack32::Field<5, 3, SealKey>;
using Reserved = util::BitPack32::Field<8, 24, u32>;
};
struct ComputeAesOption {
using KeySlot = util::BitPack32::Field<0, 3, int>;
using CipherModeIndex = util::BitPack32::Field<4, 2, CipherMode>;
};
constexpr const u8 KeyTypeSources[KeyType_Count][crypto::AesEncryptor128::KeySize] = {
[KeyType_Default] = { 0x4D, 0x87, 0x09, 0x86, 0xC4, 0x5D, 0x20, 0x72, 0x2F, 0xBA, 0x10, 0x53, 0xDA, 0x92, 0xE8, 0xA9 },
[KeyType_NormalOnly] = { 0x25, 0x03, 0x31, 0xFB, 0x25, 0x26, 0x0B, 0x79, 0x8C, 0x80, 0xD2, 0x69, 0x98, 0xE2, 0x22, 0x77 },
[KeyType_RecoveryOnly] = { 0x76, 0x14, 0x1D, 0x34, 0x93, 0x2D, 0xE1, 0x84, 0x24, 0x7B, 0x66, 0x65, 0x55, 0x04, 0x65, 0x81 },
[KeyType_NormalAndRecovery] = { 0xAF, 0x3D, 0xB7, 0xF3, 0x08, 0xA2, 0xD8, 0xA2, 0x08, 0xCA, 0x18, 0xA8, 0x69, 0x46, 0xC9, 0x0B },
};
constexpr const u8 SealKeyMasks[SealKey_Count][crypto::AesEncryptor128::KeySize] = {
[SealKey_LoadAesKey] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
[SealKey_DecryptDeviceUniqueData] = { 0xA2, 0xAB, 0xBF, 0x9C, 0x92, 0x2F, 0xBB, 0xE3, 0x78, 0x79, 0x9B, 0xC0, 0xCC, 0xEA, 0xA5, 0x74 },
[SealKey_ImportLotusKey] = { 0x57, 0xE2, 0xD9, 0x45, 0xE4, 0x92, 0xF4, 0xFD, 0xC3, 0xF9, 0x86, 0x38, 0x89, 0x78, 0x9F, 0x3C },
[SealKey_ImportEsDeviceKey] = { 0xE5, 0x4D, 0x9A, 0x02, 0xF0, 0x4F, 0x5F, 0xA8, 0xAD, 0x76, 0x0A, 0xF6, 0x32, 0x95, 0x59, 0xBB },
[SealKey_ReencryptDeviceUniqueData] = { 0x59, 0xD9, 0x31, 0xF4, 0xA7, 0x97, 0xB8, 0x14, 0x40, 0xD6, 0xA2, 0x60, 0x2B, 0xED, 0x15, 0x31 },
[SealKey_ImportSslKey] = { 0xFD, 0x6A, 0x25, 0xE5, 0xD8, 0x38, 0x7F, 0x91, 0x49, 0xDA, 0xF8, 0x59, 0xA8, 0x28, 0xE6, 0x75 },
[SealKey_ImportEsClientCertKey] = { 0x89, 0x96, 0x43, 0x9A, 0x7C, 0xD5, 0x59, 0x55, 0x24, 0xD5, 0x24, 0x18, 0xAB, 0x6C, 0x04, 0x61 },
};
constexpr u64 InvalidAsyncKey = 0;
constinit os::SdkMutex g_crypto_lock;
constinit u64 g_async_key = InvalidAsyncKey;
constinit u8 g_async_result_buffer[1_KB];
u64 GenerateRandomU64() {
/* TODO: Can/should we make this cryptographically secure? */
u64 v = -1;
os::GenerateRandomBytes(std::addressof(v), sizeof(v));
return v;
}
constinit u8 g_master_keys[pkg1::KeyGeneration_Max][crypto::AesEncryptor128::KeySize]{};
constinit u8 g_device_keys[pkg1::KeyGeneration_Max][crypto::AesEncryptor128::KeySize]{};
class KeySlotManager {
private:
u8 m_key_slot_contents[pkg1::AesKeySlot_Count][crypto::AesEncryptor256::KeySize];
public:
constexpr KeySlotManager() : m_key_slot_contents{} { /* ... */ }
public:
const u8 *GetKey(s32 slot) const {
return m_key_slot_contents[slot];
}
void LoadAesKey(s32 slot, const AccessKey &access_key, const KeySource &key_source) {
crypto::AesDecryptor128 aes;
aes.Initialize(std::addressof(access_key), sizeof(access_key));
aes.DecryptBlock(m_key_slot_contents[slot], crypto::AesEncryptor128::KeySize, std::addressof(key_source), sizeof(key_source));
}
void LoadPreparedAesKey(s32 slot, const AccessKey &access_key) {
this->SetAesKey128(slot, std::addressof(access_key), sizeof(access_key));
}
s32 PrepareDeviceMasterKey(s32 generation) {
constexpr s32 Slot = pkg1::AesKeySlot_Smc;
this->SetAesKey128(Slot, g_device_keys[generation], crypto::AesEncryptor128::KeySize);
return Slot;
}
s32 PrepareMasterKey(s32 generation) {
constexpr s32 Slot = pkg1::AesKeySlot_Smc;
this->SetAesKey128(Slot, g_master_keys[generation], crypto::AesEncryptor128::KeySize);
return Slot;
}
void SetAesKey128(s32 slot, const void *key, size_t key_size) {
std::memcpy(m_key_slot_contents[slot], key, key_size);
}
void SetEncryptedAesKey128(s32 dst, s32 src, const void *key_source, size_t key_source_size) {
crypto::AesDecryptor128 aes;
aes.Initialize(this->GetKey(src), crypto::AesDecryptor128::KeySize);
aes.DecryptBlock(m_key_slot_contents[dst], crypto::AesEncryptor128::KeySize, key_source, key_source_size);
}
void DecryptAes128(void *dst, size_t dst_size, s32 slot, const void *src, size_t src_size) {
crypto::AesDecryptor128 aes;
aes.Initialize(this->GetKey(slot), crypto::AesDecryptor128::KeySize);
aes.DecryptBlock(dst, dst_size, src, src_size);
}
};
constexpr bool IsUserAesKeySlot(s32 slot) {
return pkg1::IsUserAesKeySlot(slot);
}
constinit KeySlotManager g_key_slot_manager;
}
void PresetInternalKey(const AesKey *key, u32 generation, bool device) {
if (device) {
std::memcpy(g_device_keys[generation], key, sizeof(*key));
} else {
std::memcpy(g_master_keys[generation], key, sizeof(*key));
}
}
//Result SetConfig(AsyncOperationKey *out_op, spl::ConfigItem key, const u64 *value, size_t num_qwords, const void *sign) {
// svc::SecureMonitorArguments args;
//
// args.r[0] = static_cast<u64>(FunctionId::SetConfig);
// args.r[1] = static_cast<u64>(key);
// args.r[2] = reinterpret_cast<u64>(sign);
//
// for (size_t i = 0; i < std::min(static_cast<size_t>(4), num_qwords); i++) {
// args.r[3 + i] = value[i];
// }
// svc::CallSecureMonitor(std::addressof(args));
//
// out_op->value = args.r[1];
// return static_cast<Result>(args.r[0]);
//}
//Result GetConfig(u64 *out, size_t num_qwords, spl::ConfigItem key) {
// svc::SecureMonitorArguments args;
//
// args.r[0] = static_cast<u64>(FunctionId::GetConfig);
// args.r[1] = static_cast<u64>(key);
// svc::CallSecureMonitor(std::addressof(args));
//
// for (size_t i = 0; i < std::min(static_cast<size_t>(4), num_qwords); i++) {
// out[i] = args.r[1 + i];
// }
// return static_cast<Result>(args.r[0]);
//}
Result GetResult(Result *out, AsyncOperationKey op) {
SMC_R_UNLESS(g_async_key != InvalidAsyncKey, NoAsyncOperation);
SMC_R_UNLESS(g_async_key == op.value, InvalidAsyncOperation);
g_async_key = InvalidAsyncKey;
*out = smc::Result::Success;
return smc::Result::Success;
}
Result GetResultData(Result *out, void *out_buf, size_t out_buf_size, AsyncOperationKey op) {
SMC_R_UNLESS(g_async_key != InvalidAsyncKey, NoAsyncOperation);
SMC_R_UNLESS(g_async_key == op.value, InvalidAsyncOperation);
SMC_R_UNLESS(out_buf_size <= sizeof(g_async_result_buffer), InvalidArgument);
g_async_key = InvalidAsyncKey;
std::memcpy(out_buf, g_async_result_buffer, out_buf_size);
*out = smc::Result::Success;
return smc::Result::Success;
}
//Result ModularExponentiate(AsyncOperationKey *out_op, const void *base, const void *exp, size_t exp_size, const void *mod) {
// svc::SecureMonitorArguments args;
//
// args.r[0] = static_cast<u64>(FunctionId::ModularExponentiate);
// args.r[1] = reinterpret_cast<u64>(base);
// args.r[2] = reinterpret_cast<u64>(exp);
// args.r[3] = reinterpret_cast<u64>(mod);
// args.r[4] = exp_size;
// svc::CallSecureMonitor(std::addressof(args));
//
// out_op->value = args.r[1];
// return static_cast<Result>(args.r[0]);
//}
Result GenerateRandomBytes(void *out, size_t size) {
/* TODO: Cryptographically secure? */
os::GenerateRandomBytes(out, size);
return smc::Result::Success;
}
Result GenerateAesKek(AccessKey *out, const KeySource &source, u32 user_generation, u32 option_value) {
std::scoped_lock lk(g_crypto_lock);
const int pkg1_generation = std::max<int>(static_cast<int>(user_generation) - 1, pkg1::KeyGeneration_1_0_0);
const util::BitPack32 option = { option_value };
const bool is_device_unique = option.Get<GenerateAesKekOption::IsDeviceUnique>();
const auto key_type = option.Get<GenerateAesKekOption::KeyTypeIndex>();
const auto seal_key = option.Get<GenerateAesKekOption::SealKeyIndex>();
const u32 reserved = option.Get<GenerateAesKekOption::Reserved>();
/* Validate arguments. */
SMC_R_UNLESS(reserved == 0, InvalidArgument);
if (is_device_unique) {
SMC_R_UNLESS(pkg1::IsValidDeviceUniqueKeyGeneration(pkg1_generation), InvalidArgument);
} else {
SMC_R_UNLESS(pkg1_generation <= pkg1::KeyGeneration_Max, InvalidArgument);
}
SMC_R_UNLESS(0 <= key_type && key_type < KeyType_Count, InvalidArgument);
SMC_R_UNLESS(0 <= seal_key && seal_key < SealKey_Count, InvalidArgument);
/* Here N might check if key type is normal or recovery only, but we're not going to enforce that. */
u8 static_source[crypto::AesEncryptor128::KeySize];
/* Derive the static source. */
for (size_t i = 0; i < sizeof(static_source); ++i) {
static_source[i] = KeyTypeSources[key_type][i] ^ SealKeyMasks[seal_key][i];
}
/* Get the slot. */
const int slot = is_device_unique ? g_key_slot_manager.PrepareDeviceMasterKey(pkg1_generation) : g_key_slot_manager.PrepareMasterKey(pkg1_generation);
/* Derive a static generation kek. */
g_key_slot_manager.SetEncryptedAesKey128(pkg1::AesKeySlot_Smc, slot, static_source, sizeof(static_source));
/* Decrypt the input using the static-derived key. */
g_key_slot_manager.DecryptAes128(out, sizeof(*out), pkg1::AesKeySlot_Smc, std::addressof(source), sizeof(source));
return smc::Result::Success;
}
Result LoadAesKey(u32 keyslot, const AccessKey &access_key, const KeySource &source) {
std::scoped_lock lk(g_crypto_lock);
/* Check args. */
SMC_R_UNLESS(IsUserAesKeySlot(keyslot), InvalidArgument);
/* Unseal the access key. */
g_key_slot_manager.SetAesKey128(pkg1::AesKeySlot_Smc, std::addressof(access_key), sizeof(access_key));
/* Derive the key. */
g_key_slot_manager.SetEncryptedAesKey128(keyslot, pkg1::AesKeySlot_Smc, std::addressof(source), sizeof(source));
return smc::Result::Success;
}
Result ComputeAes(AsyncOperationKey *out_op, u64 dst_addr, u32 mode, const IvCtr &iv_ctr, u64 src_addr, size_t size) {
std::scoped_lock lk(g_crypto_lock);
/* Check size. */
SMC_R_UNLESS(util::IsAligned(size, crypto::AesEncryptor128::BlockSize), InvalidArgument);
const util::BitPack32 option = { mode };
const int slot = option.Get<ComputeAesOption::KeySlot>();
const auto cipher_mode = option.Get<ComputeAesOption::CipherModeIndex>();
SMC_R_UNLESS(IsUserAesKeySlot(slot), InvalidArgument);
/* Set a random async key. */
g_async_key = GenerateRandomU64();
switch (cipher_mode) {
case CipherMode::CbcEncrypt: crypto::EncryptAes128Cbc(reinterpret_cast<void *>(dst_addr), size, g_key_slot_manager.GetKey(slot), crypto::AesEncryptor128::KeySize, iv_ctr.data, sizeof(iv_ctr.data), reinterpret_cast<const void *>(src_addr), size); break;
case CipherMode::CbcDecrypt: crypto::DecryptAes128Cbc(reinterpret_cast<void *>(dst_addr), size, g_key_slot_manager.GetKey(slot), crypto::AesEncryptor128::KeySize, iv_ctr.data, sizeof(iv_ctr.data), reinterpret_cast<const void *>(src_addr), size); break;
case CipherMode::Ctr: crypto::EncryptAes128Ctr(reinterpret_cast<void *>(dst_addr), size, g_key_slot_manager.GetKey(slot), crypto::AesEncryptor128::KeySize, iv_ctr.data, sizeof(iv_ctr.data), reinterpret_cast<const void *>(src_addr), size); break;
default:
return smc::Result::InvalidArgument;
}
*out_op = AsyncOperationKey{g_async_key};
return smc::Result::Success;
}
//Result GenerateSpecificAesKey(AesKey *out_key, const KeySource &source, u32 generation, u32 which) {
// svc::SecureMonitorArguments args;
//
// args.r[0] = static_cast<u64>(FunctionId::GenerateSpecificAesKey);
// args.r[1] = source.data64[0];
// args.r[2] = source.data64[1];
// args.r[3] = generation;
// args.r[4] = which;
// svc::CallSecureMonitor(std::addressof(args));
//
// out_key->data64[0] = args.r[1];
// out_key->data64[1] = args.r[2];
// return static_cast<Result>(args.r[0]);
//}
//Result ComputeCmac(Cmac *out_mac, u32 keyslot, const void *data, size_t size) {
// svc::SecureMonitorArguments args;
//
// args.r[0] = static_cast<u64>(FunctionId::ComputeCmac);
// args.r[1] = keyslot;
// args.r[2] = reinterpret_cast<u64>(data);
// args.r[3] = size;
// svc::CallSecureMonitor(std::addressof(args));
//
// out_mac->data64[0] = args.r[1];
// out_mac->data64[1] = args.r[2];
// return static_cast<Result>(args.r[0]);
//}
//Result ReencryptDeviceUniqueData(void *data, size_t size, const AccessKey &access_key_dec, const KeySource &source_dec, const AccessKey &access_key_enc, const KeySource &source_enc, u32 option) {
// svc::SecureMonitorArguments args;
//
// args.r[0] = static_cast<u64>(FunctionId::ReencryptDeviceUniqueData);
// args.r[1] = reinterpret_cast<u64>(std::addressof(access_key_dec));
// args.r[2] = reinterpret_cast<u64>(std::addressof(access_key_enc));
// args.r[3] = option;
// args.r[4] = reinterpret_cast<u64>(data);
// args.r[5] = size;
// args.r[6] = reinterpret_cast<u64>(std::addressof(source_dec));
// args.r[7] = reinterpret_cast<u64>(std::addressof(source_enc));
// svc::CallSecureMonitor(std::addressof(args));
//
// return static_cast<Result>(args.r[0]);
//}
//Result DecryptDeviceUniqueData(void *data, size_t size, const AccessKey &access_key, const KeySource &source, DeviceUniqueDataMode mode) {
// svc::SecureMonitorArguments args;
//
// args.r[0] = static_cast<u64>(FunctionId::DecryptDeviceUniqueData);
// args.r[1] = access_key.data64[0];
// args.r[2] = access_key.data64[1];
// args.r[3] = static_cast<u32>(mode);
// args.r[4] = reinterpret_cast<u64>(data);
// args.r[5] = size;
// args.r[6] = source.data64[0];
// args.r[7] = source.data64[1];
// svc::CallSecureMonitor(std::addressof(args));
//
// return static_cast<Result>(args.r[0]);
//}
//Result ModularExponentiateWithStorageKey(AsyncOperationKey *out_op, const void *base, const void *mod, ModularExponentiateWithStorageKeyMode mode) {
// svc::SecureMonitorArguments args;
//
// args.r[0] = static_cast<u64>(FunctionId::ModularExponentiateWithStorageKey);
// args.r[1] = reinterpret_cast<u64>(base);
// args.r[2] = reinterpret_cast<u64>(mod);
// args.r[3] = static_cast<u32>(mode);
// svc::CallSecureMonitor(std::addressof(args));
//
// out_op->value = args.r[1];
// return static_cast<Result>(args.r[0]);
//}
//Result PrepareEsDeviceUniqueKey(AsyncOperationKey *out_op, const void *base, const void *mod, const void *label_digest, size_t label_digest_size, u32 option) {
// svc::SecureMonitorArguments args;
//
// args.r[0] = static_cast<u64>(FunctionId::PrepareEsDeviceUniqueKey);
// args.r[1] = reinterpret_cast<u64>(base);
// args.r[2] = reinterpret_cast<u64>(mod);
// std::memset(std::addressof(args.r[3]), 0, 4 * sizeof(args.r[3]));
// std::memcpy(std::addressof(args.r[3]), label_digest, std::min(static_cast<size_t>(4 * sizeof(args.r[3])), label_digest_size));
// args.r[7] = option;
// svc::CallSecureMonitor(std::addressof(args));
//
// out_op->value = args.r[1];
// return static_cast<Result>(args.r[0]);
//}
Result LoadPreparedAesKey(u32 keyslot, const AccessKey &access_key) {
std::scoped_lock lk(g_crypto_lock);
/* Check args. */
SMC_R_UNLESS(IsUserAesKeySlot(keyslot), InvalidArgument);
/* Unseal the key. */
g_key_slot_manager.SetAesKey128(keyslot, std::addressof(access_key), sizeof(access_key));
return smc::Result::Success;
}
//Result PrepareCommonEsTitleKey(AccessKey *out, const KeySource &source, u32 generation) {
// svc::SecureMonitorArguments args;
//
// args.r[0] = static_cast<u64>(FunctionId::PrepareCommonEsTitleKey);
// args.r[1] = source.data64[0];
// args.r[2] = source.data64[1];
// args.r[3] = generation;
// svc::CallSecureMonitor(std::addressof(args));
//
// out->data64[0] = args.r[1];
// out->data64[1] = args.r[2];
// return static_cast<Result>(args.r[0]);
//}
//
///* Deprecated functions. */
//Result LoadEsDeviceKey(const void *data, size_t size, const AccessKey &access_key, const KeySource &source, u32 option) {
// svc::SecureMonitorArguments args;
//
// args.r[0] = static_cast<u64>(FunctionId::LoadEsDeviceKey);
// args.r[1] = access_key.data64[0];
// args.r[2] = access_key.data64[1];
// args.r[3] = option;
// args.r[4] = reinterpret_cast<u64>(data);
// args.r[5] = size;
// args.r[6] = source.data64[0];
// args.r[7] = source.data64[1];
// svc::CallSecureMonitor(std::addressof(args));
//
// return static_cast<Result>(args.r[0]);
//}
//Result DecryptDeviceUniqueData(size_t *out_size, void *data, size_t size, const AccessKey &access_key, const KeySource &source, u32 option) {
// svc::SecureMonitorArguments args;
//
// args.r[0] = static_cast<u64>(FunctionId::DecryptDeviceUniqueData);
// args.r[1] = access_key.data64[0];
// args.r[2] = access_key.data64[1];
// args.r[3] = option;
// args.r[4] = reinterpret_cast<u64>(data);
// args.r[5] = size;
// args.r[6] = source.data64[0];
// args.r[7] = source.data64[1];
// svc::CallSecureMonitor(std::addressof(args));
//
// *out_size = static_cast<size_t>(args.r[1]);
// return static_cast<Result>(args.r[0]);
//}
//Result DecryptAndStoreGcKey(const void *data, size_t size, const AccessKey &access_key, const KeySource &source, u32 option) {
// svc::SecureMonitorArguments args;
//
// args.r[0] = static_cast<u64>(FunctionId::DecryptAndStoreGcKey);
// args.r[1] = access_key.data64[0];
// args.r[2] = access_key.data64[1];
// args.r[3] = option;
// args.r[4] = reinterpret_cast<u64>(data);
// args.r[5] = size;
// args.r[6] = source.data64[0];
// args.r[7] = source.data64[1];
// svc::CallSecureMonitor(std::addressof(args));
//
// return static_cast<Result>(args.r[0]);
//}
Result AtmosphereCopyToIram(uintptr_t, const void *, size_t ) {
AMS_ABORT("AtmosphereCopyToIram not supported on generic SecureMonitor api.");
}
Result AtmosphereCopyFromIram(void *, uintptr_t, size_t) {
AMS_ABORT("AtmosphereCopyToIram not supported on generic SecureMonitor api.");
}
Result AtmosphereReadWriteRegister(uint64_t, uint32_t, uint32_t, uint32_t *) {
AMS_ABORT("AtmosphereReadWriteRegister not supported on generic SecureMonitor api.");
}
Result AtmosphereGetEmummcConfig(void *out_config, void *out_paths, u32 storage_id) {
/* TODO: We actually probably should support this one on generic? */
AMS_UNUSED(out_config, out_paths, storage_id);
AMS_ABORT("AtmosphereGetEmummcConfig not supported on generic SecureMonitor api.");
}
}

View file

@ -126,15 +126,15 @@ namespace ams::spl::smc {
return static_cast<Result>(args.r[0]);
}
Result ComputeAes(AsyncOperationKey *out_op, u32 dst_addr, u32 mode, const IvCtr &iv_ctr, u32 src_addr, size_t size) {
Result ComputeAes(AsyncOperationKey *out_op, u64 dst_addr, u32 mode, const IvCtr &iv_ctr, u64 src_addr, size_t size) {
svc::SecureMonitorArguments args;
args.r[0] = static_cast<u64>(FunctionId::ComputeAes);
args.r[1] = mode;
args.r[2] = iv_ctr.data64[0];
args.r[3] = iv_ctr.data64[1];
args.r[4] = src_addr;
args.r[5] = dst_addr;
args.r[4] = static_cast<u32>(src_addr);
args.r[5] = static_cast<u32>(dst_addr);
args.r[6] = size;
svc::CallSecureMonitor(std::addressof(args));