fusee: Move nxboot hand-off to IRAM.

fusee/exosphere: Minor cleanup.
This commit is contained in:
hexkyz 2018-09-15 21:08:58 +01:00
parent d61ec20679
commit 39d812f434
19 changed files with 370 additions and 290 deletions

View file

@ -36,9 +36,8 @@ static unsigned int g_se_exp_sizes[KEYSLOT_RSA_MAX];
static bool g_se_generated_vector = false;
static uint8_t g_se_stored_test_vector[0x10];
/* Initialize a SE linked list. */
void ll_init(se_ll_t *ll, void *buffer, size_t size) {
void ll_init(volatile se_ll_t *ll, void *buffer, size_t size) {
ll->num_entries = 0; /* 1 Entry. */
if (buffer != NULL) {
@ -62,7 +61,7 @@ void set_security_engine_callback(unsigned int (*callback)(void)) {
/* Fires on Security Engine operation completion. */
void se_operation_completed(void) {
SECURITY_ENGINE->INT_ENABLE_REG = 0;
se_get_regs()->INT_ENABLE_REG = 0;
if (g_se_callback != NULL) {
g_se_callback();
g_se_callback = NULL;
@ -70,13 +69,14 @@ void se_operation_completed(void) {
}
void se_check_error_status_reg(void) {
if (SECURITY_ENGINE->ERR_STATUS_REG) {
if (se_get_regs()->ERR_STATUS_REG) {
generic_panic();
}
}
void se_check_for_error(void) {
if (SECURITY_ENGINE->INT_STATUS_REG & 0x10000 || SECURITY_ENGINE->FLAGS_REG & 3 || SECURITY_ENGINE->ERR_STATUS_REG) {
volatile tegra_se_t *se = se_get_regs();
if (se->INT_STATUS_REG & 0x10000 || se->FLAGS_REG & 3 || se->ERR_STATUS_REG) {
generic_panic();
}
}
@ -86,12 +86,11 @@ void se_trigger_interrupt(void) {
}
void se_verify_flags_cleared(void) {
if (SECURITY_ENGINE->FLAGS_REG & 3) {
if (se_get_regs()->FLAGS_REG & 3) {
generic_panic();
}
}
void se_generate_test_vector(void *vector) {
/* TODO: Implement real test vector generation. */
memset(vector, 0, 0x10);
@ -122,23 +121,27 @@ void se_generate_stored_vector(void) {
/* Set the flags for an AES keyslot. */
void set_aes_keyslot_flags(unsigned int keyslot, unsigned int flags) {
volatile tegra_se_t *se = se_get_regs();
if (keyslot >= KEYSLOT_AES_MAX) {
generic_panic();
}
/* Misc flags. */
if (flags & ~0x80) {
SECURITY_ENGINE->AES_KEYSLOT_FLAGS[keyslot] = ~flags;
se->AES_KEYSLOT_FLAGS[keyslot] = ~flags;
}
/* Disable keyslot reads. */
if (flags & 0x80) {
SECURITY_ENGINE->AES_KEY_READ_DISABLE_REG &= ~(1 << keyslot);
se->AES_KEY_READ_DISABLE_REG &= ~(1 << keyslot);
}
}
/* Set the flags for an RSA keyslot. */
void set_rsa_keyslot_flags(unsigned int keyslot, unsigned int flags) {
volatile tegra_se_t *se = se_get_regs();
if (keyslot >= KEYSLOT_RSA_MAX) {
generic_panic();
}
@ -146,28 +149,32 @@ void set_rsa_keyslot_flags(unsigned int keyslot, unsigned int flags) {
/* Misc flags. */
if (flags & ~0x80) {
/* TODO: Why are flags assigned this way? */
SECURITY_ENGINE->RSA_KEYSLOT_FLAGS[keyslot] = (((flags >> 4) & 4) | (flags & 3)) ^ 7;
se->RSA_KEYSLOT_FLAGS[keyslot] = (((flags >> 4) & 4) | (flags & 3)) ^ 7;
}
/* Disable keyslot reads. */
if (flags & 0x80) {
SECURITY_ENGINE->RSA_KEY_READ_DISABLE_REG &= ~(1 << keyslot);
se->RSA_KEY_READ_DISABLE_REG &= ~(1 << keyslot);
}
}
void clear_aes_keyslot(unsigned int keyslot) {
volatile tegra_se_t *se = se_get_regs();
if (keyslot >= KEYSLOT_AES_MAX) {
generic_panic();
}
/* Zero out the whole keyslot and IV. */
for (unsigned int i = 0; i < 0x10; i++) {
SECURITY_ENGINE->AES_KEYTABLE_ADDR = (keyslot << 4) | i;
SECURITY_ENGINE->AES_KEYTABLE_DATA = 0;
se->AES_KEYTABLE_ADDR = (keyslot << 4) | i;
se->AES_KEYTABLE_DATA = 0;
}
}
void clear_rsa_keyslot(unsigned int keyslot) {
volatile tegra_se_t *se = se_get_regs();
if (keyslot >= KEYSLOT_RSA_MAX) {
generic_panic();
}
@ -175,40 +182,44 @@ void clear_rsa_keyslot(unsigned int keyslot) {
/* Zero out the whole keyslot. */
for (unsigned int i = 0; i < 0x40; i++) {
/* Select Keyslot Modulus[i] */
SECURITY_ENGINE->RSA_KEYTABLE_ADDR = (keyslot << 7) | i | 0x40;
SECURITY_ENGINE->RSA_KEYTABLE_DATA = 0;
se->RSA_KEYTABLE_ADDR = (keyslot << 7) | i | 0x40;
se->RSA_KEYTABLE_DATA = 0;
}
for (unsigned int i = 0; i < 0x40; i++) {
/* Select Keyslot Expontent[i] */
SECURITY_ENGINE->RSA_KEYTABLE_ADDR = (keyslot << 7) | i;
SECURITY_ENGINE->RSA_KEYTABLE_DATA = 0;
se->RSA_KEYTABLE_ADDR = (keyslot << 7) | i;
se->RSA_KEYTABLE_DATA = 0;
}
}
void set_aes_keyslot(unsigned int keyslot, const void *key, size_t key_size) {
volatile tegra_se_t *se = se_get_regs();
if (keyslot >= KEYSLOT_AES_MAX || key_size > KEYSIZE_AES_MAX) {
generic_panic();
}
for (size_t i = 0; i < (key_size >> 2); i++) {
SECURITY_ENGINE->AES_KEYTABLE_ADDR = (keyslot << 4) | i;
SECURITY_ENGINE->AES_KEYTABLE_DATA = read32le(key, 4 * i);
se->AES_KEYTABLE_ADDR = (keyslot << 4) | i;
se->AES_KEYTABLE_DATA = read32le(key, 4 * i);
}
}
void set_rsa_keyslot(unsigned int keyslot, const void *modulus, size_t modulus_size, const void *exponent, size_t exp_size) {
volatile tegra_se_t *se = se_get_regs();
if (keyslot >= KEYSLOT_RSA_MAX || modulus_size > KEYSIZE_RSA_MAX || exp_size > KEYSIZE_RSA_MAX) {
generic_panic();
}
for (size_t i = 0; i < (modulus_size >> 2); i++) {
SECURITY_ENGINE->RSA_KEYTABLE_ADDR = (keyslot << 7) | 0x40 | i;
SECURITY_ENGINE->RSA_KEYTABLE_DATA = read32be(modulus, (4 * (modulus_size >> 2)) - (4 * i) - 4);
se->RSA_KEYTABLE_ADDR = (keyslot << 7) | 0x40 | i;
se->RSA_KEYTABLE_DATA = read32be(modulus, (4 * (modulus_size >> 2)) - (4 * i) - 4);
}
for (size_t i = 0; i < (exp_size >> 2); i++) {
SECURITY_ENGINE->RSA_KEYTABLE_ADDR = (keyslot << 7) | i;
SECURITY_ENGINE->RSA_KEYTABLE_DATA = read32be(exponent, (4 * (exp_size >> 2)) - (4 * i) - 4);
se->RSA_KEYTABLE_ADDR = (keyslot << 7) | i;
se->RSA_KEYTABLE_DATA = read32be(exponent, (4 * (exp_size >> 2)) - (4 * i) - 4);
}
g_se_modulus_sizes[keyslot] = modulus_size;
@ -216,48 +227,56 @@ void set_rsa_keyslot(unsigned int keyslot, const void *modulus, size_t modulus_
}
void set_aes_keyslot_iv(unsigned int keyslot, const void *iv, size_t iv_size) {
volatile tegra_se_t *se = se_get_regs();
if (keyslot >= KEYSLOT_AES_MAX || iv_size > 0x10) {
generic_panic();
}
for (size_t i = 0; i < (iv_size >> 2); i++) {
SECURITY_ENGINE->AES_KEYTABLE_ADDR = (keyslot << 4) | 8 | i;
SECURITY_ENGINE->AES_KEYTABLE_DATA = read32le(iv, 4 * i);
se->AES_KEYTABLE_ADDR = (keyslot << 4) | 8 | i;
se->AES_KEYTABLE_DATA = read32le(iv, 4 * i);
}
}
void clear_aes_keyslot_iv(unsigned int keyslot) {
volatile tegra_se_t *se = se_get_regs();
if (keyslot >= KEYSLOT_AES_MAX) {
generic_panic();
}
for (size_t i = 0; i < (0x10 >> 2); i++) {
SECURITY_ENGINE->AES_KEYTABLE_ADDR = (keyslot << 4) | 8 | i;
SECURITY_ENGINE->AES_KEYTABLE_DATA = 0;
se->AES_KEYTABLE_ADDR = (keyslot << 4) | 8 | i;
se->AES_KEYTABLE_DATA = 0;
}
}
void set_se_ctr(const void *ctr) {
for (unsigned int i = 0; i < 4; i++) {
SECURITY_ENGINE->CRYPTO_CTR_REG[i] = read32le(ctr, i * 4);
se_get_regs()->CRYPTO_CTR_REG[i] = read32le(ctr, i * 4);
}
}
void decrypt_data_into_keyslot(unsigned int keyslot_dst, unsigned int keyslot_src, const void *wrapped_key, size_t wrapped_key_size) {
volatile tegra_se_t *se = se_get_regs();
if (keyslot_dst >= KEYSLOT_AES_MAX || keyslot_src >= KEYSIZE_AES_MAX || wrapped_key_size > KEYSIZE_AES_MAX) {
generic_panic();
}
SECURITY_ENGINE->CONFIG_REG = (ALG_AES_DEC | DST_KEYTAB);
SECURITY_ENGINE->CRYPTO_REG = keyslot_src << 24;
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
SECURITY_ENGINE->CRYPTO_KEYTABLE_DST_REG = keyslot_dst << 8;
se->CONFIG_REG = (ALG_AES_DEC | DST_KEYTAB);
se->CRYPTO_REG = keyslot_src << 24;
se->BLOCK_COUNT_REG = 0;
se->CRYPTO_KEYTABLE_DST_REG = keyslot_dst << 8;
flush_dcache_range(wrapped_key, (const uint8_t *)wrapped_key + wrapped_key_size);
trigger_se_blocking_op(OP_START, NULL, 0, wrapped_key, wrapped_key_size);
}
void se_aes_crypt_insecure_internal(unsigned int keyslot, uint32_t out_ll_paddr, uint32_t in_ll_paddr, size_t size, unsigned int crypt_config, bool encrypt, unsigned int (*callback)(void)) {
volatile tegra_se_t *se = se_get_regs();
if (keyslot >= KEYSLOT_AES_MAX) {
generic_panic();
}
@ -268,34 +287,34 @@ void se_aes_crypt_insecure_internal(unsigned int keyslot, uint32_t out_ll_paddr,
/* Setup Config register. */
if (encrypt) {
SECURITY_ENGINE->CONFIG_REG = (ALG_AES_ENC | DST_MEMORY);
se->CONFIG_REG = (ALG_AES_ENC | DST_MEMORY);
} else {
SECURITY_ENGINE->CONFIG_REG = (ALG_AES_DEC | DST_MEMORY);
se->CONFIG_REG = (ALG_AES_DEC | DST_MEMORY);
}
/* Setup Crypto register. */
SECURITY_ENGINE->CRYPTO_REG = crypt_config | (keyslot << 24) | (encrypt << 8);
se->CRYPTO_REG = crypt_config | (keyslot << 24) | (encrypt << 8);
/* Mark this encryption as insecure -- this makes the SE not a secure busmaster. */
SECURITY_ENGINE->CRYPTO_REG |= 0x80000000;
se->CRYPTO_REG |= 0x80000000;
/* Appropriate number of blocks. */
SECURITY_ENGINE->BLOCK_COUNT_REG = (size >> 4) - 1;
se->BLOCK_COUNT_REG = (size >> 4) - 1;
/* Set the callback, for after the async operation. */
set_security_engine_callback(callback);
/* Enable SE Interrupt firing for async op. */
SECURITY_ENGINE->INT_ENABLE_REG = 0x10;
se->INT_ENABLE_REG = 0x10;
/* Setup Input/Output lists */
SECURITY_ENGINE->IN_LL_ADDR_REG = in_ll_paddr;
SECURITY_ENGINE->OUT_LL_ADDR_REG = out_ll_paddr;
se->IN_LL_ADDR_REG = in_ll_paddr;
se->OUT_LL_ADDR_REG = out_ll_paddr;
/* Set registers for operation. */
SECURITY_ENGINE->ERR_STATUS_REG = SECURITY_ENGINE->ERR_STATUS_REG;
SECURITY_ENGINE->INT_STATUS_REG = SECURITY_ENGINE->INT_STATUS_REG;
SECURITY_ENGINE->OPERATION_REG = 1;
se->ERR_STATUS_REG = se->ERR_STATUS_REG;
se->INT_STATUS_REG = se->INT_STATUS_REG;
se->OPERATION_REG = 1;
/* Ensure writes go through. */
__dsb_ish();
@ -303,7 +322,7 @@ void se_aes_crypt_insecure_internal(unsigned int keyslot, uint32_t out_ll_paddr,
void se_aes_ctr_crypt_insecure(unsigned int keyslot, uint32_t out_ll_paddr, uint32_t in_ll_paddr, size_t size, const void *ctr, unsigned int (*callback)(void)) {
/* Unknown what this write does, but official code writes it for CTR mode. */
SECURITY_ENGINE->_0x80C = 1;
se_get_regs()->SPARE_0 = 1;
set_se_ctr(ctr);
se_aes_crypt_insecure_internal(keyslot, out_ll_paddr, in_ll_paddr, size, 0x81E, true, callback);
}
@ -318,8 +337,8 @@ void se_aes_cbc_decrypt_insecure(unsigned int keyslot, uint32_t out_ll_paddr, ui
se_aes_crypt_insecure_internal(keyslot, out_ll_paddr, in_ll_paddr, size, 0x66, false, callback);
}
void se_exp_mod(unsigned int keyslot, void *buf, size_t size, unsigned int (*callback)(void)) {
volatile tegra_se_t *se = se_get_regs();
uint8_t stack_buf[KEYSIZE_RSA_MAX];
if (keyslot >= KEYSLOT_RSA_MAX || size > KEYSIZE_RSA_MAX) {
@ -331,24 +350,24 @@ void se_exp_mod(unsigned int keyslot, void *buf, size_t size, unsigned int (*cal
stack_buf[i] = *((uint8_t *)buf + size - i - 1);
}
SECURITY_ENGINE->CONFIG_REG = (ALG_RSA | DST_RSAREG);
SECURITY_ENGINE->RSA_CONFIG = keyslot << 24;
SECURITY_ENGINE->RSA_KEY_SIZE_REG = (g_se_modulus_sizes[keyslot] >> 6) - 1;
SECURITY_ENGINE->RSA_EXP_SIZE_REG = g_se_exp_sizes[keyslot] >> 2;
se->CONFIG_REG = (ALG_RSA | DST_RSAREG);
se->RSA_CONFIG = keyslot << 24;
se->RSA_KEY_SIZE_REG = (g_se_modulus_sizes[keyslot] >> 6) - 1;
se->RSA_EXP_SIZE_REG = g_se_exp_sizes[keyslot] >> 2;
set_security_engine_callback(callback);
/* Enable SE Interrupt firing for async op. */
SECURITY_ENGINE->INT_ENABLE_REG = 0x10;
se->INT_ENABLE_REG = 0x10;
flush_dcache_range(stack_buf, stack_buf + KEYSIZE_RSA_MAX);
trigger_se_rsa_op(stack_buf, size);
while (!(SECURITY_ENGINE->INT_STATUS_REG & 2)) { /* Wait a while */ }
while (!(se->INT_STATUS_REG & 2)) { /* Wait a while */ }
}
void se_synchronous_exp_mod(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size) {
volatile tegra_se_t *se = se_get_regs();
uint8_t stack_buf[KEYSIZE_RSA_MAX];
if (keyslot >= KEYSLOT_RSA_MAX || src_size > KEYSIZE_RSA_MAX || dst_size > KEYSIZE_RSA_MAX) {
@ -360,11 +379,10 @@ void se_synchronous_exp_mod(unsigned int keyslot, void *dst, size_t dst_size, co
stack_buf[i] = *((uint8_t *)src + src_size - i - 1);
}
SECURITY_ENGINE->CONFIG_REG = (ALG_RSA | DST_RSAREG);
SECURITY_ENGINE->RSA_CONFIG = keyslot << 24;
SECURITY_ENGINE->RSA_KEY_SIZE_REG = (g_se_modulus_sizes[keyslot] >> 6) - 1;
SECURITY_ENGINE->RSA_EXP_SIZE_REG = g_se_exp_sizes[keyslot] >> 2;
se->CONFIG_REG = (ALG_RSA | DST_RSAREG);
se->RSA_CONFIG = keyslot << 24;
se->RSA_KEY_SIZE_REG = (g_se_modulus_sizes[keyslot] >> 6) - 1;
se->RSA_EXP_SIZE_REG = g_se_exp_sizes[keyslot] >> 2;
flush_dcache_range(stack_buf, stack_buf + KEYSIZE_RSA_MAX);
trigger_se_blocking_op(OP_START, NULL, 0, stack_buf, src_size);
@ -382,7 +400,7 @@ void se_get_exp_mod_output(void *buf, size_t size) {
/* Copy endian swapped output. */
while (num_dwords) {
*p_out = read32be(SECURITY_ENGINE->RSA_OUTPUT, offset);
*p_out = read32be(se_get_regs()->RSA_OUTPUT, offset);
offset += 4;
p_out--;
num_dwords--;
@ -447,22 +465,25 @@ bool se_rsa2048_pss_verify(const void *signature, size_t signature_size, const v
void trigger_se_rsa_op(void *buf, size_t size) {
volatile tegra_se_t *se = se_get_regs();
se_ll_t in_ll;
ll_init(&in_ll, (void *)buf, size);
/* Set the input LL. */
SECURITY_ENGINE->IN_LL_ADDR_REG = (uint32_t) get_physical_address(&in_ll);
se->IN_LL_ADDR_REG = (uint32_t) get_physical_address(&in_ll);
/* Set registers for operation. */
SECURITY_ENGINE->ERR_STATUS_REG = SECURITY_ENGINE->ERR_STATUS_REG;
SECURITY_ENGINE->INT_STATUS_REG = SECURITY_ENGINE->INT_STATUS_REG;
SECURITY_ENGINE->OPERATION_REG = 1;
se->ERR_STATUS_REG = se->ERR_STATUS_REG;
se->INT_STATUS_REG = se->INT_STATUS_REG;
se->OPERATION_REG = 1;
/* Ensure writes go through. */
__dsb_ish();
}
void trigger_se_blocking_op(unsigned int op, void *dst, size_t dst_size, const void *src, size_t src_size) {
volatile tegra_se_t *se = se_get_regs();
se_ll_t in_ll;
se_ll_t out_ll;
@ -472,20 +493,19 @@ void trigger_se_blocking_op(unsigned int op, void *dst, size_t dst_size, const v
__dsb_sy();
/* Set the LLs. */
SECURITY_ENGINE->IN_LL_ADDR_REG = (uint32_t) get_physical_address(&in_ll);
SECURITY_ENGINE->OUT_LL_ADDR_REG = (uint32_t) get_physical_address(&out_ll);
se->IN_LL_ADDR_REG = (uint32_t) get_physical_address(&in_ll);
se->OUT_LL_ADDR_REG = (uint32_t) get_physical_address(&out_ll);
/* Set registers for operation. */
SECURITY_ENGINE->ERR_STATUS_REG = SECURITY_ENGINE->ERR_STATUS_REG;
SECURITY_ENGINE->INT_STATUS_REG = SECURITY_ENGINE->INT_STATUS_REG;
SECURITY_ENGINE->OPERATION_REG = op;
se->ERR_STATUS_REG = se->ERR_STATUS_REG;
se->INT_STATUS_REG = se->INT_STATUS_REG;
se->OPERATION_REG = op;
while (!(SECURITY_ENGINE->INT_STATUS_REG & 0x10)) { /* Wait a while */ }
while (!(se->INT_STATUS_REG & 0x10)) { /* Wait a while */ }
se_check_for_error();
}
/* Secure AES Functionality. */
void se_perform_aes_block_operation(void *dst, size_t dst_size, const void *src, size_t src_size) {
uint8_t block[0x10] = {0};
@ -501,7 +521,7 @@ void se_perform_aes_block_operation(void *dst, size_t dst_size, const void *src,
flush_dcache_range(block, block + sizeof(block));
/* Trigger AES operation. */
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se_get_regs()->BLOCK_COUNT_REG = 0;
trigger_se_blocking_op(OP_START, block, sizeof(block), block, sizeof(block));
/* Copy output data into dst. */
@ -512,6 +532,8 @@ void se_perform_aes_block_operation(void *dst, size_t dst_size, const void *src,
}
void se_aes_ctr_crypt(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size, const void *ctr, size_t ctr_size) {
volatile tegra_se_t *se = se_get_regs();
if (keyslot >= KEYSLOT_AES_MAX || ctr_size != 0x10) {
generic_panic();
}
@ -526,15 +548,15 @@ void se_aes_ctr_crypt(unsigned int keyslot, void *dst, size_t dst_size, const vo
unsigned int num_blocks = src_size >> 4;
/* Unknown what this write does, but official code writes it for CTR mode. */
SECURITY_ENGINE->_0x80C = 1;
SECURITY_ENGINE->CONFIG_REG = (ALG_AES_ENC | DST_MEMORY);
SECURITY_ENGINE->CRYPTO_REG = (keyslot << 24) | 0x91E;
se->SPARE_0 = 1;
se->CONFIG_REG = (ALG_AES_ENC | DST_MEMORY);
se->CRYPTO_REG = (keyslot << 24) | 0x91E;
set_se_ctr(ctr);
/* Handle any aligned blocks. */
size_t aligned_size = (size_t)num_blocks << 4;
if (aligned_size) {
SECURITY_ENGINE->BLOCK_COUNT_REG = num_blocks - 1;
se->BLOCK_COUNT_REG = num_blocks - 1;
trigger_se_blocking_op(OP_START, dst, dst_size, src, aligned_size);
}
@ -553,13 +575,15 @@ void se_aes_ctr_crypt(unsigned int keyslot, void *dst, size_t dst_size, const vo
}
void se_aes_ecb_encrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size, unsigned int config_high) {
volatile tegra_se_t *se = se_get_regs();
if (keyslot >= KEYSLOT_AES_MAX || dst_size != 0x10 || src_size != 0x10) {
generic_panic();
}
/* Set configuration high (256-bit vs 128-bit) based on parameter. */
SECURITY_ENGINE->CONFIG_REG = (ALG_AES_ENC | DST_MEMORY) | (config_high << 16);
SECURITY_ENGINE->CRYPTO_REG = keyslot << 24 | 0x100;
se->CONFIG_REG = (ALG_AES_ENC | DST_MEMORY) | (config_high << 16);
se->CRYPTO_REG = keyslot << 24 | 0x100;
flush_dcache_range((uint8_t *)src, (uint8_t *)src + 0x10);
se_perform_aes_block_operation(dst, 0x10, src, 0x10);
flush_dcache_range((uint8_t *)dst, (uint8_t *)dst + 0x10);
@ -576,12 +600,14 @@ void se_aes_256_ecb_encrypt_block(unsigned int keyslot, void *dst, size_t dst_si
void se_aes_ecb_decrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size) {
volatile tegra_se_t *se = se_get_regs();
if (keyslot >= KEYSLOT_AES_MAX || dst_size != 0x10 || src_size != 0x10) {
generic_panic();
}
SECURITY_ENGINE->CONFIG_REG = (ALG_AES_DEC | DST_MEMORY);
SECURITY_ENGINE->CRYPTO_REG = keyslot << 24;
se->CONFIG_REG = (ALG_AES_DEC | DST_MEMORY);
se->CRYPTO_REG = keyslot << 24;
flush_dcache_range((uint8_t *)src, (uint8_t *)src + 0x10);
se_perform_aes_block_operation(dst, 0x10, src, 0x10);
flush_dcache_range((uint8_t *)dst, (uint8_t *)dst + 0x10);
@ -600,6 +626,8 @@ void shift_left_xor_rb(uint8_t *key) {
}
void se_compute_aes_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size, unsigned int config_high) {
volatile tegra_se_t *se = se_get_regs();
if (keyslot >= KEYSLOT_AES_MAX) {
generic_panic();
}
@ -616,17 +644,16 @@ void se_compute_aes_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, con
shift_left_xor_rb(derived_key);
}
SECURITY_ENGINE->CONFIG_REG = (ALG_AES_ENC | DST_HASHREG) | (config_high << 16);
SECURITY_ENGINE->CRYPTO_REG = (keyslot << 24) | (0x145);
se->CONFIG_REG = (ALG_AES_ENC | DST_HASHREG) | (config_high << 16);
se->CRYPTO_REG = (keyslot << 24) | (0x145);
clear_aes_keyslot_iv(keyslot);
unsigned int num_blocks = (data_size + 0xF) >> 4;
/* Handle aligned blocks. */
if (num_blocks > 1) {
SECURITY_ENGINE->BLOCK_COUNT_REG = num_blocks - 2;
se->BLOCK_COUNT_REG = num_blocks - 2;
trigger_se_blocking_op(OP_START, NULL, 0, data, data_size);
SECURITY_ENGINE->CRYPTO_REG |= 0x80;
se->CRYPTO_REG |= 0x80;
}
/* Create final block. */
@ -643,13 +670,13 @@ void se_compute_aes_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, con
}
/* Perform last operation. */
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se->BLOCK_COUNT_REG = 0;
flush_dcache_range(last_block, last_block + sizeof(last_block));
trigger_se_blocking_op(OP_START, NULL, 0, last_block, sizeof(last_block));
/* Copy output CMAC. */
for (unsigned int i = 0; i < (cmac_size >> 2); i++) {
((uint32_t *)cmac)[i] = read32le(SECURITY_ENGINE->HASH_RESULT_REG, i << 2);
((uint32_t *)cmac)[i] = read32le(se->HASH_RESULT_REG, i << 2);
}
}
@ -661,42 +688,48 @@ void se_compute_aes_256_cmac(unsigned int keyslot, void *cmac, size_t cmac_size,
}
void se_aes_256_cbc_encrypt(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size, const void *iv) {
volatile tegra_se_t *se = se_get_regs();
if (keyslot >= KEYSLOT_AES_MAX || src_size < 0x10) {
generic_panic();
}
SECURITY_ENGINE->CONFIG_REG = (ALG_AES_ENC | DST_MEMORY) | (0x202 << 16);
SECURITY_ENGINE->CRYPTO_REG = (keyslot << 24) | 0x144;
se->CONFIG_REG = (ALG_AES_ENC | DST_MEMORY) | (0x202 << 16);
se->CRYPTO_REG = (keyslot << 24) | 0x144;
set_aes_keyslot_iv(keyslot, iv, 0x10);
SECURITY_ENGINE->BLOCK_COUNT_REG = (src_size >> 4) - 1;
se->BLOCK_COUNT_REG = (src_size >> 4) - 1;
trigger_se_blocking_op(OP_START, dst, dst_size, src, src_size);
}
/* SHA256 Implementation. */
void se_calculate_sha256(void *dst, const void *src, size_t src_size) {
volatile tegra_se_t *se = se_get_regs();
/* Setup config for SHA256, size = BITS(src_size) */
SECURITY_ENGINE->CONFIG_REG = (ENCMODE_SHA256 | ALG_SHA | DST_HASHREG);
SECURITY_ENGINE->SHA_CONFIG_REG = 1;
SECURITY_ENGINE->SHA_MSG_LENGTH_REG = (uint32_t)(src_size << 3);
SECURITY_ENGINE->_0x208 = 0;
SECURITY_ENGINE->_0x20C = 0;
SECURITY_ENGINE->_0x210 = 0;
SECURITY_ENGINE->SHA_MSG_LEFT_REG = (uint32_t)(src_size << 3);
SECURITY_ENGINE->_0x218 = 0;
SECURITY_ENGINE->_0x21C = 0;
SECURITY_ENGINE->_0x220 = 0;
se->CONFIG_REG = (ENCMODE_SHA256 | ALG_SHA | DST_HASHREG);
se->SHA_CONFIG_REG = 1;
se->SHA_MSG_LENGTH_REG = (uint32_t)(src_size << 3);
se->_0x208 = 0;
se->_0x20C = 0;
se->_0x210 = 0;
se->SHA_MSG_LEFT_REG = (uint32_t)(src_size << 3);
se->_0x218 = 0;
se->_0x21C = 0;
se->_0x220 = 0;
/* Trigger the operation. */
trigger_se_blocking_op(OP_START, NULL, 0, src, src_size);
/* Copy output hash. */
for (unsigned int i = 0; i < (0x20 >> 2); i++) {
((uint32_t *)dst)[i] = read32be(SECURITY_ENGINE->HASH_RESULT_REG, i << 2);
((uint32_t *)dst)[i] = read32be(se->HASH_RESULT_REG, i << 2);
}
}
/* RNG API */
void se_initialize_rng(unsigned int keyslot) {
volatile tegra_se_t *se = se_get_regs();
if (keyslot >= KEYSLOT_AES_MAX) {
generic_panic();
}
@ -705,74 +738,80 @@ void se_initialize_rng(unsigned int keyslot) {
/* This will be discarded, when done. */
uint8_t output_buf[0x10];
SECURITY_ENGINE->RNG_SRC_CONFIG_REG = 3; /* Entropy enable + Entropy lock enable */
SECURITY_ENGINE->RNG_RESEED_INTERVAL_REG = 70001;
SECURITY_ENGINE->CONFIG_REG = (ALG_RNG | DST_MEMORY);
SECURITY_ENGINE->CRYPTO_REG = (keyslot << 24) | 0x108;
SECURITY_ENGINE->RNG_CONFIG_REG = 5;
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se->RNG_SRC_CONFIG_REG = 3; /* Entropy enable + Entropy lock enable */
se->RNG_RESEED_INTERVAL_REG = 70001;
se->CONFIG_REG = (ALG_RNG | DST_MEMORY);
se->CRYPTO_REG = (keyslot << 24) | 0x108;
se->RNG_CONFIG_REG = 5;
se->BLOCK_COUNT_REG = 0;
trigger_se_blocking_op(OP_START, output_buf, 0x10, NULL, 0);
}
void se_generate_random(unsigned int keyslot, void *dst, size_t size) {
volatile tegra_se_t *se = se_get_regs();
if (keyslot >= KEYSLOT_AES_MAX) {
generic_panic();
}
uint32_t num_blocks = size >> 4;
size_t aligned_size = num_blocks << 4;
SECURITY_ENGINE->CONFIG_REG = (ALG_RNG | DST_MEMORY);
SECURITY_ENGINE->CRYPTO_REG = (keyslot << 24) | 0x108;
SECURITY_ENGINE->RNG_CONFIG_REG = 4;
se->CONFIG_REG = (ALG_RNG | DST_MEMORY);
se->CRYPTO_REG = (keyslot << 24) | 0x108;
se->RNG_CONFIG_REG = 4;
if (num_blocks >= 1) {
SECURITY_ENGINE->BLOCK_COUNT_REG = num_blocks - 1;
se->BLOCK_COUNT_REG = num_blocks - 1;
trigger_se_blocking_op(OP_START, dst, aligned_size, NULL, 0);
}
if (size > aligned_size) {
se_perform_aes_block_operation(dst + aligned_size, size - aligned_size, NULL, 0);
}
}
/* SE context save API. */
void se_set_in_context_save_mode(bool is_context_save_mode) {
uint32_t val = SECURITY_ENGINE->_0x0;
volatile tegra_se_t *se = se_get_regs();
uint32_t val = se->_0x0;
if (is_context_save_mode) {
val |= 0x10000;
} else {
val &= 0xFFFEFFFF;
}
SECURITY_ENGINE->_0x0 = val;
se->_0x0 = val;
/* Perform a useless read from flags reg. */
(void)(SECURITY_ENGINE->FLAGS_REG);
(void)(se->FLAGS_REG);
}
void se_generate_random_key(unsigned int dst_keyslot, unsigned int rng_keyslot) {
volatile tegra_se_t *se = se_get_regs();
if (dst_keyslot >= KEYSLOT_AES_MAX || rng_keyslot >= KEYSLOT_AES_MAX) {
generic_panic();
}
/* Setup Config. */
SECURITY_ENGINE->CONFIG_REG = (ALG_RNG | DST_KEYTAB);
SECURITY_ENGINE->CRYPTO_REG = (rng_keyslot << 24) | 0x108;
SECURITY_ENGINE->RNG_CONFIG_REG = 4;
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se->CONFIG_REG = (ALG_RNG | DST_KEYTAB);
se->CRYPTO_REG = (rng_keyslot << 24) | 0x108;
se->RNG_CONFIG_REG = 4;
se->BLOCK_COUNT_REG = 0;
/* Generate low part of key. */
SECURITY_ENGINE->CRYPTO_KEYTABLE_DST_REG = (dst_keyslot << 8);
se->CRYPTO_KEYTABLE_DST_REG = (dst_keyslot << 8);
trigger_se_blocking_op(OP_START, NULL, 0, NULL, 0);
/* Generate high part of key. */
SECURITY_ENGINE->CRYPTO_KEYTABLE_DST_REG = (dst_keyslot << 8) | 1;
se->CRYPTO_KEYTABLE_DST_REG = (dst_keyslot << 8) | 1;
trigger_se_blocking_op(OP_START, NULL, 0, NULL, 0);
}
void se_generate_srk(unsigned int srkgen_keyslot) {
SECURITY_ENGINE->CONFIG_REG = (ALG_RNG | DST_SRK);
SECURITY_ENGINE->CRYPTO_REG = (srkgen_keyslot << 24) | 0x108;
SECURITY_ENGINE->RNG_CONFIG_REG = 6;
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
volatile tegra_se_t *se = se_get_regs();
se->CONFIG_REG = (ALG_RNG | DST_SRK);
se->CRYPTO_REG = (srkgen_keyslot << 24) | 0x108;
se->RNG_CONFIG_REG = 6;
se->BLOCK_COUNT_REG = 0;
trigger_se_blocking_op(OP_START, NULL, 0, NULL, 0);
}
@ -796,6 +835,7 @@ void se_encrypt_with_srk(void *dst, size_t dst_size, const void *src, size_t src
}
void se_save_context(unsigned int srkgen_keyslot, unsigned int rng_keyslot, void *dst) {
volatile tegra_se_t *se = se_get_regs();
uint8_t _work_buf[0x80];
uint8_t *work_buf = (uint8_t *)(((uintptr_t)_work_buf + 0x7F) & ~0x3F);
@ -808,39 +848,39 @@ void se_save_context(unsigned int srkgen_keyslot, unsigned int rng_keyslot, void
flush_dcache_range(work_buf, work_buf + 0x10);
/* Save random initial block. */
SECURITY_ENGINE->CONFIG_REG = (ALG_AES_ENC | DST_MEMORY);
SECURITY_ENGINE->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_MEM);
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se->CONFIG_REG = (ALG_AES_ENC | DST_MEMORY);
se->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_MEM);
se->BLOCK_COUNT_REG = 0;
se_encrypt_with_srk(dst, 0x10, work_buf, 0x10);
/* Save Sticky Bits. */
for (unsigned int i = 0; i < 0x2; i++) {
SECURITY_ENGINE->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_STICKY_BITS) | (i << CTX_SAVE_STICKY_BIT_INDEX_SHIFT);
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_STICKY_BITS) | (i << CTX_SAVE_STICKY_BIT_INDEX_SHIFT);
se->BLOCK_COUNT_REG = 0;
se_encrypt_with_srk(dst + 0x10 + (i * 0x10), 0x10, NULL, 0);
}
/* Save AES Key Table. */
for (unsigned int i = 0; i < KEYSLOT_AES_MAX; i++) {
SECURITY_ENGINE->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_KEYTABLE_AES) | (i << CTX_SAVE_KEY_INDEX_SHIFT) | (CTX_SAVE_KEY_LOW_BITS);
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_KEYTABLE_AES) | (i << CTX_SAVE_KEY_INDEX_SHIFT) | (CTX_SAVE_KEY_LOW_BITS);
se->BLOCK_COUNT_REG = 0;
se_encrypt_with_srk(dst + 0x30 + (i * 0x20), 0x10, NULL, 0);
SECURITY_ENGINE->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_KEYTABLE_AES) | (i << CTX_SAVE_KEY_INDEX_SHIFT) | (CTX_SAVE_KEY_HIGH_BITS);
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_KEYTABLE_AES) | (i << CTX_SAVE_KEY_INDEX_SHIFT) | (CTX_SAVE_KEY_HIGH_BITS);
se->BLOCK_COUNT_REG = 0;
se_encrypt_with_srk(dst + 0x40 + (i * 0x20), 0x10, NULL, 0);
}
/* Save AES Original IVs. */
for (unsigned int i = 0; i < KEYSLOT_AES_MAX; i++) {
SECURITY_ENGINE->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_KEYTABLE_AES) | (i << CTX_SAVE_KEY_INDEX_SHIFT) | (CTX_SAVE_KEY_ORIGINAL_IV);
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_KEYTABLE_AES) | (i << CTX_SAVE_KEY_INDEX_SHIFT) | (CTX_SAVE_KEY_ORIGINAL_IV);
se->BLOCK_COUNT_REG = 0;
se_encrypt_with_srk(dst + 0x230 + (i * 0x10), 0x10, NULL, 0);
}
/* Save AES Updated IVs */
for (unsigned int i = 0; i < KEYSLOT_AES_MAX; i++) {
SECURITY_ENGINE->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_KEYTABLE_AES) | (i << CTX_SAVE_KEY_INDEX_SHIFT) | (CTX_SAVE_KEY_UPDATED_IV);
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_KEYTABLE_AES) | (i << CTX_SAVE_KEY_INDEX_SHIFT) | (CTX_SAVE_KEY_UPDATED_IV);
se->BLOCK_COUNT_REG = 0;
se_encrypt_with_srk(dst + 0x330 + (i * 0x10), 0x10, NULL, 0);
}
@ -849,8 +889,8 @@ void se_save_context(unsigned int srkgen_keyslot, unsigned int rng_keyslot, void
for (unsigned int rsa_key = 0; rsa_key < KEYSLOT_RSA_MAX; rsa_key++) {
for (unsigned int mod_exp = 0; mod_exp < 2; mod_exp++) {
for (unsigned int sub_block = 0; sub_block < 0x10; sub_block++) {
SECURITY_ENGINE->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_KEYTABLE_RSA) | ((2 * rsa_key + (1 - mod_exp)) << CTX_SAVE_RSA_KEY_INDEX_SHIFT) | (sub_block << CTX_SAVE_RSA_KEY_BLOCK_INDEX_SHIFT);
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_KEYTABLE_RSA) | ((2 * rsa_key + (1 - mod_exp)) << CTX_SAVE_RSA_KEY_INDEX_SHIFT) | (sub_block << CTX_SAVE_RSA_KEY_BLOCK_INDEX_SHIFT);
se->BLOCK_COUNT_REG = 0;
se_encrypt_with_srk(rsa_ctx_out, 0x10, NULL, 0);
rsa_ctx_out += 0x10;
}
@ -859,14 +899,14 @@ void se_save_context(unsigned int srkgen_keyslot, unsigned int rng_keyslot, void
/* Save "Known Pattern. " */
static const uint8_t context_save_known_pattern[0x10] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};
SECURITY_ENGINE->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_MEM);
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_MEM);
se->BLOCK_COUNT_REG = 0;
se_encrypt_with_srk(dst + 0x830, 0x10, context_save_known_pattern, 0x10);
/* Save SRK into PMC registers. */
SECURITY_ENGINE->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_SRK);
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_SRK);
se->BLOCK_COUNT_REG = 0;
se_encrypt_with_srk(work_buf, 0, NULL, 0);
SECURITY_ENGINE->CONFIG_REG = 0;
se->CONFIG_REG = 0;
se_encrypt_with_srk(work_buf, 0, NULL, 0);
}