exo2: implement the rest of cpu suspend (security checks TODO)

This commit is contained in:
Michael Scire 2020-06-08 00:41:27 -07:00 committed by SciresM
parent 34098f7215
commit 2fb363dcf0
12 changed files with 384 additions and 8 deletions

View file

@ -1007,7 +1007,7 @@ namespace ams::secmon {
se::InitializeRandom();
se::SetRandomKey(pkg1::AesKeySlot_Temporary);
se::GenerateSrk();
se::SetRandomKey(pkg1::AesKeySlot_TzramSave);
se::SetRandomKey(pkg1::AesKeySlot_TzramSaveKek);
/* Initialize pmc secure scratch. */
pmc::InitializeRandomScratch();

View file

@ -17,6 +17,7 @@
#include "../secmon_cache.hpp"
#include "../secmon_cpu_context.hpp"
#include "../secmon_error.hpp"
#include "../secmon_misc.hpp"
#include "secmon_smc_power_management.hpp"
#include "secmon_smc_se_lock.hpp"
@ -152,11 +153,137 @@ namespace ams::secmon::smc {
}
void ValidateSocStateForSuspend() {
/* Validate that all other cores are off. */
AMS_ABORT_UNLESS(reg::HasValue(PMC + APBDEV_PMC_PWRGATE_STATUS, PMC_REG_BITS_VALUE(PWRGATE_STATUS_CE123, 0)));
/* Validate that the bpmp is appropriately halted. */
AMS_ABORT_UNLESS(reg::Read(FLOW_CTLR + FLOW_CTLR_HALT_COP_EVENTS) != reg::Encode(FLOW_REG_BITS_ENUM (HALT_COP_EVENTS_MODE, FLOW_MODE_STOP),
FLOW_REG_BITS_ENUM_SEL(HALT_COP_EVENTS_JTAG, IsJtagEnabled(), ENABLED, DISABLED)));
/* TODO */
}
void GenerateCryptographicallyRandomBytes(void * const dst, int size) {
/* Flush the region we're about to fill to ensure consistency with the SE. */
hw::FlushDataCache(dst, size);
hw::DataSynchronizationBarrierInnerShareable();
/* Generate random bytes. */
se::GenerateRandomBytes(dst, size);
hw::DataSynchronizationBarrierInnerShareable();
/* Flush to ensure the CPU sees consistent data for the region. */
hw::FlushDataCache(dst, size);
hw::DataSynchronizationBarrierInnerShareable();
}
void SaveSecureContextForErista() {
/* TODO */
/* Generate a random key source. */
util::AlignedBuffer<hw::DataCacheLineSize, se::AesBlockSize> key_source;
GenerateCryptographicallyRandomBytes(key_source, se::AesBlockSize);
const u32 * const key_source_32 = reinterpret_cast<const u32 *>(static_cast<u8 *>(key_source));
/* Ensure that the key source registers are not locked. */
AMS_ABORT_UNLESS(pmc::GetSecureRegisterLockState(pmc::SecureRegister_KeySourceReadWrite) != pmc::LockState::Locked);
/* Write the key source, lock writes to the key source, and verify that the key source is write-locked. */
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH24, key_source_32[0]);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH25, key_source_32[1]);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH26, key_source_32[2]);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH27, key_source_32[3]);
pmc::LockSecureRegister(pmc::SecureRegister_KeySourceWrite);
AMS_ABORT_UNLESS(pmc::GetSecureRegisterLockState(pmc::SecureRegister_KeySourceWrite) == pmc::LockState::Locked);
/* Verify the key source is correct in registers, and read-lock the key source registers. */
AMS_ABORT_UNLESS(reg::Read(PMC + APBDEV_PMC_SECURE_SCRATCH24) == key_source_32[0]);
AMS_ABORT_UNLESS(reg::Read(PMC + APBDEV_PMC_SECURE_SCRATCH25) == key_source_32[1]);
AMS_ABORT_UNLESS(reg::Read(PMC + APBDEV_PMC_SECURE_SCRATCH26) == key_source_32[2]);
AMS_ABORT_UNLESS(reg::Read(PMC + APBDEV_PMC_SECURE_SCRATCH27) == key_source_32[3]);
pmc::LockSecureRegister(pmc::SecureRegister_KeySourceRead);
/* Ensure that the key source registers are locked. */
AMS_ABORT_UNLESS(pmc::GetSecureRegisterLockState(pmc::SecureRegister_KeySourceReadWrite) == pmc::LockState::Locked);
/* Generate a random kek into keyslot 2. */
se::SetRandomKey(pkg1::AesKeySlot_TzramSaveKek);
/* Verify that the se is in a validate state, context save, and validate again. */
{
se::ValidateErrStatus();
ON_SCOPE_EXIT { se::ValidateErrStatus(); };
{
/* Transition to non-secure mode for the duration of the context save operation. */
se::SetSecure(false);
ON_SCOPE_EXIT { se::SetSecure(true); };
/* Get a pointer to the context storage. */
se::Context * const context = MemoryRegionVirtualDramSecureDataStoreSecurityEngineState.GetPointer<se::Context>();
static_assert(MemoryRegionVirtualDramSecureDataStoreSecurityEngineState.GetSize() == sizeof(*context));
/* Save the context. */
se::SaveContext(context);
/* Ensure that the cpu sees consistent data. */
hw::FlushDataCache(context, sizeof(*context));
hw::DataSynchronizationBarrierInnerShareable();
/* Write the context pointer to pmc scratch, so that the bootrom will restore it on wake. */
reg::Write(PMC + APBDEV_PMC_SCRATCH43, MemoryRegionPhysicalDramSecureDataStoreSecurityEngineState.GetAddress());
}
}
/* Clear keyslot 3, and then derive the save key. */
se::ClearAesKeySlot(pkg1::AesKeySlot_TzramSaveKey);
se::SetEncryptedAesKey256(pkg1::AesKeySlot_TzramSaveKey, pkg1::AesKeySlot_TzramSaveKek, key_source, sizeof(key_source));
/* Declare a temporary block to be used as both iv and mac. */
u32 temp_block[se::AesBlockSize / sizeof(u32)] = {};
/* Ensure that the SE sees consistent data for tzram. */
const void * const tzram_save_src = MemoryRegionVirtualTzramReadOnlyAlias.GetPointer<u8>() + MemoryRegionVirtualTzramVolatileData.GetSize() + MemoryRegionVirtualTzramVolatileStack.GetSize();
void * const tzram_save_dst = MemoryRegionVirtualIramSc7Work.GetPointer<void>();
constexpr size_t TzramSaveSize = MemoryRegionVirtualDramSecureDataStoreTzram.GetSize();
hw::FlushDataCache(tzram_save_src, TzramSaveSize);
hw::FlushDataCache(tzram_save_dst, TzramSaveSize);
hw::DataSynchronizationBarrierInnerShareable();
/* Encrypt tzram using our random key. */
se::EncryptAes256Cbc(tzram_save_dst, TzramSaveSize, pkg1::AesKeySlot_TzramSaveKey, tzram_save_src, TzramSaveSize, temp_block, se::AesBlockSize);
hw::FlushDataCache(tzram_save_dst, TzramSaveSize);
hw::DataSynchronizationBarrierInnerShareable();
/* Copy the data from work space to the secure storage destination. */
void * const tzram_store_dst = MemoryRegionVirtualDramSecureDataStoreTzram.GetPointer<void>();
std::memcpy(tzram_store_dst, tzram_save_dst, TzramSaveSize);
hw::FlushDataCache(tzram_store_dst, TzramSaveSize);
hw::DataSynchronizationBarrierInnerShareable();
/* Compute cmac of tzram into our temporary block. */
se::ComputeAes256Cmac(temp_block, se::AesBlockSize, pkg1::AesKeySlot_TzramSaveKey, tzram_save_src, TzramSaveSize);
/* Ensure that the cmac registers are not locked. */
AMS_ABORT_UNLESS(pmc::GetSecureRegisterLockState(pmc::SecureRegister_CmacReadWrite) != pmc::LockState::Locked);
/* Write the cmac, lock writes to the cmac, and verify that the cmac is write-locked. */
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH112, temp_block[0]);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH113, temp_block[1]);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH114, temp_block[2]);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH115, temp_block[3]);
pmc::LockSecureRegister(pmc::SecureRegister_CmacWrite);
AMS_ABORT_UNLESS(pmc::GetSecureRegisterLockState(pmc::SecureRegister_CmacWrite) == pmc::LockState::Locked);
/* Verify the key source is correct in registers, and read-lock the key source registers. */
AMS_ABORT_UNLESS(reg::Read(PMC + APBDEV_PMC_SECURE_SCRATCH112) == temp_block[0]);
AMS_ABORT_UNLESS(reg::Read(PMC + APBDEV_PMC_SECURE_SCRATCH113) == temp_block[1]);
AMS_ABORT_UNLESS(reg::Read(PMC + APBDEV_PMC_SECURE_SCRATCH114) == temp_block[2]);
AMS_ABORT_UNLESS(reg::Read(PMC + APBDEV_PMC_SECURE_SCRATCH115) == temp_block[3]);
pmc::LockSecureRegister(pmc::SecureRegister_CmacRead);
/* Ensure that the key source registers are locked. */
AMS_ABORT_UNLESS(pmc::GetSecureRegisterLockState(pmc::SecureRegister_CmacReadWrite) == pmc::LockState::Locked);
}
void SaveSecureContextForMariko() {