kern: KMemoryManager/KPageGroup use physical addresses instead of virtual, now

This commit is contained in:
Michael Scire 2021-09-18 00:11:10 -07:00 committed by SciresM
parent 2c4bd44d7e
commit 2f2c36b22b
17 changed files with 305 additions and 260 deletions

View file

@ -247,7 +247,7 @@ namespace ams::kern::arch::arm64 {
cur_entry.block_size += next_entry.block_size;
} else {
if (cur_valid && IsHeapPhysicalAddressForFinalize(cur_entry.phys_addr)) {
mm.Close(GetHeapVirtualAddress(cur_entry.phys_addr), cur_entry.block_size / PageSize);
mm.Close(cur_entry.phys_addr, cur_entry.block_size / PageSize);
}
/* Update tracking variables. */
@ -265,7 +265,7 @@ namespace ams::kern::arch::arm64 {
/* Handle the last block. */
if (cur_valid && IsHeapPhysicalAddressForFinalize(cur_entry.phys_addr)) {
mm.Close(GetHeapVirtualAddress(cur_entry.phys_addr), cur_entry.block_size / PageSize);
mm.Close(cur_entry.phys_addr, cur_entry.block_size / PageSize);
}
}
@ -696,11 +696,10 @@ namespace ams::kern::arch::arm64 {
/* Close the blocks. */
if (!force && IsHeapPhysicalAddress(next_entry.phys_addr)) {
const KVirtualAddress block_virt_addr = GetHeapVirtualAddress(next_entry.phys_addr);
const size_t block_num_pages = next_entry.block_size / PageSize;
if (R_FAILED(pages_to_close.AddBlock(block_virt_addr, block_num_pages))) {
if (R_FAILED(pages_to_close.AddBlock(next_entry.phys_addr, block_num_pages))) {
this->NoteUpdated();
Kernel::GetMemoryManager().Close(block_virt_addr, block_num_pages);
Kernel::GetMemoryManager().Close(next_entry.phys_addr, block_num_pages);
pages_to_close.CloseAndReset();
}
}
@ -792,7 +791,7 @@ namespace ams::kern::arch::arm64 {
/* Open references to the pages, if we should. */
if (IsHeapPhysicalAddress(orig_phys_addr)) {
Kernel::GetMemoryManager().Open(GetHeapVirtualAddress(orig_phys_addr), num_pages);
Kernel::GetMemoryManager().Open(orig_phys_addr, num_pages);
}
return ResultSuccess();
@ -815,7 +814,7 @@ namespace ams::kern::arch::arm64 {
if (num_pages < ContiguousPageSize / PageSize) {
for (const auto &block : pg) {
const KPhysicalAddress block_phys_addr = GetLinearMappedPhysicalAddress(block.GetAddress());
const KPhysicalAddress block_phys_addr = block.GetAddress();
const size_t cur_pages = block.GetNumPages();
R_TRY(this->Map(virt_addr, block_phys_addr, cur_pages, entry_template, disable_head_merge && virt_addr == orig_virt_addr, L3BlockSize, page_list, reuse_ll));
@ -827,7 +826,7 @@ namespace ams::kern::arch::arm64 {
AlignedMemoryBlock virt_block(GetInteger(virt_addr), num_pages, L1BlockSize);
for (const auto &block : pg) {
/* Create a block representing this physical group, synchronize its alignment to our virtual block. */
const KPhysicalAddress block_phys_addr = GetLinearMappedPhysicalAddress(block.GetAddress());
const KPhysicalAddress block_phys_addr = block.GetAddress();
size_t cur_pages = block.GetNumPages();
AlignedMemoryBlock phys_block(GetInteger(block_phys_addr), cur_pages, virt_block.GetAlignment());

View file

@ -1051,7 +1051,7 @@ namespace ams::kern::board::nintendo::nx {
SmmuSynchronizationBarrier();
/* Open references to the pages. */
mm.Open(GetHeapVirtualAddress(phys_addr), DeviceLargePageSize / PageSize);
mm.Open(phys_addr, DeviceLargePageSize / PageSize);
/* Advance. */
phys_addr += DeviceLargePageSize;
@ -1112,7 +1112,7 @@ namespace ams::kern::board::nintendo::nx {
SmmuSynchronizationBarrier();
/* Open references to the pages. */
mm.Open(GetHeapVirtualAddress(phys_addr), (map_count * DevicePageSize) / PageSize);
mm.Open(phys_addr, (map_count * DevicePageSize) / PageSize);
/* Advance. */
phys_addr += map_count * DevicePageSize;
@ -1151,7 +1151,7 @@ namespace ams::kern::board::nintendo::nx {
/* Map the device page. */
size_t mapped_size = 0;
R_TRY(this->MapDevicePage(std::addressof(mapped_size), num_pt, max_pt, GetHeapPhysicalAddress(contig_range.address), contig_range.size, cur_addr, device_perm));
R_TRY(this->MapDevicePage(std::addressof(mapped_size), num_pt, max_pt, contig_range.address, contig_range.size, cur_addr, device_perm));
/* Advance. */
cur_addr += contig_range.size;
@ -1245,7 +1245,7 @@ namespace ams::kern::board::nintendo::nx {
contig_count = contig_phys_addr != Null<KPhysicalAddress> ? 1 : 0;
} else if (phys_addr == Null<KPhysicalAddress> || phys_addr != (contig_phys_addr + (contig_count * DevicePageSize))) {
/* If we're no longer contiguous, close the range we've been building. */
mm.Close(GetHeapVirtualAddress(contig_phys_addr), (contig_count * DevicePageSize) / PageSize);
mm.Close(contig_phys_addr, (contig_count * DevicePageSize) / PageSize);
contig_phys_addr = phys_addr;
contig_count = contig_phys_addr != Null<KPhysicalAddress> ? 1 : 0;
@ -1255,7 +1255,7 @@ namespace ams::kern::board::nintendo::nx {
}
if (contig_count > 0) {
mm.Close(GetHeapVirtualAddress(contig_phys_addr), (contig_count * DevicePageSize) / PageSize);
mm.Close(contig_phys_addr, (contig_count * DevicePageSize) / PageSize);
}
}
@ -1294,7 +1294,7 @@ namespace ams::kern::board::nintendo::nx {
SmmuSynchronizationBarrier();
/* Close references. */
mm.Close(GetHeapVirtualAddress(phys_addr), DeviceLargePageSize / PageSize);
mm.Close(phys_addr, DeviceLargePageSize / PageSize);
/* Advance. */
address += DeviceLargePageSize;
@ -1320,7 +1320,7 @@ namespace ams::kern::board::nintendo::nx {
/* Walk the directory. */
KProcessAddress cur_process_address = process_address;
size_t remaining_size = size;
KPhysicalAddress cur_phys_address = GetHeapPhysicalAddress(contig_range.address);
KPhysicalAddress cur_phys_address = contig_range.address;
size_t remaining_in_range = contig_range.size;
bool first = true;
u32 first_attr = 0;
@ -1367,7 +1367,7 @@ namespace ams::kern::board::nintendo::nx {
}
range_open = true;
cur_phys_address = GetHeapPhysicalAddress(contig_range.address);
cur_phys_address = contig_range.address;
remaining_in_range = contig_range.size;
}
@ -1410,7 +1410,7 @@ namespace ams::kern::board::nintendo::nx {
}
range_open = true;
cur_phys_address = GetHeapPhysicalAddress(contig_range.address);
cur_phys_address = contig_range.address;
remaining_in_range = contig_range.size;
}

View file

@ -511,8 +511,10 @@ namespace ams::kern::board::nintendo::nx {
MESOSPHERE_ABORT_UNLESS(Kernel::GetSystemResourceLimit().Reserve(ams::svc::LimitableResource_PhysicalMemoryMax, SecureAppletMemorySize));
constexpr auto SecureAppletAllocateOption = KMemoryManager::EncodeOption(KMemoryManager::Pool_System, KMemoryManager::Direction_FromFront);
g_secure_applet_memory_address = Kernel::GetMemoryManager().AllocateAndOpenContinuous(SecureAppletMemorySize / PageSize, 1, SecureAppletAllocateOption);
MESOSPHERE_ABORT_UNLESS(g_secure_applet_memory_address != Null<KVirtualAddress>);
const KPhysicalAddress secure_applet_memory_phys_addr = Kernel::GetMemoryManager().AllocateAndOpenContinuous(SecureAppletMemorySize / PageSize, 1, SecureAppletAllocateOption);
MESOSPHERE_ABORT_UNLESS(secure_applet_memory_phys_addr != Null<KPhysicalAddress>);
g_secure_applet_memory_address = KMemoryLayout::GetLinearVirtualAddress(secure_applet_memory_phys_addr);
}
/* Initialize KTrace. */
@ -690,9 +692,7 @@ namespace ams::kern::board::nintendo::nx {
MESOSPHERE_ASSERT(it != page_groups[i].end());
MESOSPHERE_ASSERT(it->GetNumPages() == 1);
KPhysicalAddress phys_addr = page_table.GetHeapPhysicalAddress(it->GetAddress());
args->r[reg_id] = GetInteger(phys_addr) | (GetInteger(virt_addr) & (PageSize - 1));
args->r[reg_id] = GetInteger(it->GetAddress()) | (GetInteger(virt_addr) & (PageSize - 1));
} else {
/* If we couldn't map, we should clear the address. */
args->r[reg_id] = 0;
@ -729,25 +729,21 @@ namespace ams::kern::board::nintendo::nx {
/* Allocate the memory. */
const size_t num_pages = size / PageSize;
const KVirtualAddress vaddr = Kernel::GetMemoryManager().AllocateAndOpenContinuous(num_pages, alignment / PageSize, KMemoryManager::EncodeOption(static_cast<KMemoryManager::Pool>(pool), KMemoryManager::Direction_FromFront));
R_UNLESS(vaddr != Null<KVirtualAddress>, svc::ResultOutOfMemory());
const KPhysicalAddress paddr = Kernel::GetMemoryManager().AllocateAndOpenContinuous(num_pages, alignment / PageSize, KMemoryManager::EncodeOption(static_cast<KMemoryManager::Pool>(pool), KMemoryManager::Direction_FromFront));
R_UNLESS(paddr != Null<KPhysicalAddress>, svc::ResultOutOfMemory());
/* Ensure we don't leak references to the memory on error. */
auto mem_guard = SCOPE_GUARD { Kernel::GetMemoryManager().Close(vaddr, num_pages); };
auto mem_guard = SCOPE_GUARD { Kernel::GetMemoryManager().Close(paddr, num_pages); };
/* If the memory isn't already secure, set it as secure. */
if (pool != KMemoryManager::Pool_System) {
/* Get the physical address. */
const KPhysicalAddress paddr = KPageTable::GetHeapPhysicalAddress(vaddr);
MESOSPHERE_ABORT_UNLESS(paddr != Null<KPhysicalAddress>);
/* Set the secure region. */
R_UNLESS(SetSecureRegion(paddr, size), svc::ResultOutOfMemory());
}
/* We succeeded. */
mem_guard.Cancel();
*out = vaddr;
*out = KPageTable::GetHeapVirtualAddress(paddr);
return ResultSuccess();
}
@ -779,7 +775,7 @@ namespace ams::kern::board::nintendo::nx {
}
/* Close the secure region's pages. */
Kernel::GetMemoryManager().Close(address, size / PageSize);
Kernel::GetMemoryManager().Close(KPageTable::GetHeapPhysicalAddress(address), size / PageSize);
}
}

View file

@ -165,11 +165,11 @@ namespace ams::kern::init {
/* Allocate memory for the slab. */
constexpr auto AllocateOption = KMemoryManager::EncodeOption(KMemoryManager::Pool_System, KMemoryManager::Direction_FromFront);
const KVirtualAddress slab_address = Kernel::GetMemoryManager().AllocateAndOpenContinuous(num_pages, 1, AllocateOption);
MESOSPHERE_ABORT_UNLESS(slab_address != Null<KVirtualAddress>);
const KPhysicalAddress slab_address = Kernel::GetMemoryManager().AllocateAndOpenContinuous(num_pages, 1, AllocateOption);
MESOSPHERE_ABORT_UNLESS(slab_address != Null<KPhysicalAddress>);
/* Initialize the slabheap. */
KPageBuffer::InitializeSlabHeap(GetVoidPointer(slab_address), slab_size);
KPageBuffer::InitializeSlabHeap(GetVoidPointer(KMemoryLayout::GetLinearVirtualAddress(slab_address)), slab_size);
}
void InitializeSlabHeaps() {

View file

@ -101,7 +101,7 @@ namespace ams::kern {
/* If we crossed a page boundary, free the pages we're done using. */
if (KVirtualAddress aligned_current = util::AlignDown(GetInteger(current), PageSize); aligned_current != data) {
const size_t freed_size = data - aligned_current;
Kernel::GetMemoryManager().Close(aligned_current, freed_size / PageSize);
Kernel::GetMemoryManager().Close(KMemoryLayout::GetLinearPhysicalAddress(aligned_current), freed_size / PageSize);
Kernel::GetSystemResourceLimit().Release(ams::svc::LimitableResource_PhysicalMemoryMax, freed_size);
}
@ -114,7 +114,7 @@ namespace ams::kern {
const size_t binary_pages = binary_size / PageSize;
/* Get the pool for both the current (compressed) image, and the decompressed process. */
const auto src_pool = Kernel::GetMemoryManager().GetPool(data);
const auto src_pool = Kernel::GetMemoryManager().GetPool(KMemoryLayout::GetLinearPhysicalAddress(data));
const auto dst_pool = reader.UsesSecureMemory() ? secure_pool : unsafe_pool;
/* Determine the process size, and how much memory isn't already reserved. */
@ -140,7 +140,7 @@ namespace ams::kern {
/* Add the previously reserved pages. */
if (src_pool == dst_pool && binary_pages != 0) {
/* NOTE: Nintendo does not check the result of this operation. */
pg.AddBlock(data, binary_pages);
pg.AddBlock(KMemoryLayout::GetLinearPhysicalAddress(data), binary_pages);
}
/* Add the previously unreserved pages. */
@ -176,7 +176,7 @@ namespace ams::kern {
} else {
if (src_pool != dst_pool) {
std::memcpy(GetVoidPointer(temp_address + process_size - binary_size), GetVoidPointer(data), aligned_size);
Kernel::GetMemoryManager().Close(data, aligned_size / PageSize);
Kernel::GetMemoryManager().Close(KMemoryLayout::GetLinearPhysicalAddress(data), aligned_size / PageSize);
}
}
@ -218,7 +218,7 @@ namespace ams::kern {
const size_t cur_pages = std::min(block_remaining, work_remaining);
const size_t cur_size = cur_pages * PageSize;
std::memcpy(GetVoidPointer(block_address), GetVoidPointer(work_address), cur_size);
std::memcpy(GetVoidPointer(KMemoryLayout::GetLinearVirtualAddress(block_address)), GetVoidPointer(KMemoryLayout::GetLinearVirtualAddress(work_address)), cur_size);
block_address += cur_size;
work_address += cur_size;
@ -268,7 +268,7 @@ namespace ams::kern {
{
const size_t remaining_size = util::AlignUp(GetInteger(g_initial_process_binary_address) + g_initial_process_binary_header.size, PageSize) - util::AlignDown(GetInteger(current), PageSize);
const size_t remaining_pages = remaining_size / PageSize;
Kernel::GetMemoryManager().Close(util::AlignDown(GetInteger(current), PageSize), remaining_pages);
Kernel::GetMemoryManager().Close(KMemoryLayout::GetLinearPhysicalAddress(util::AlignDown(GetInteger(current), PageSize)), remaining_pages);
Kernel::GetSystemResourceLimit().Release(ams::svc::LimitableResource_PhysicalMemoryMax, remaining_size);
}
}
@ -312,7 +312,7 @@ namespace ams::kern {
/* The initial process binary is potentially over-allocated, so free any extra pages. */
if (total_size < InitialProcessBinarySizeMax) {
Kernel::GetMemoryManager().Close(g_initial_process_binary_address + total_size, (InitialProcessBinarySizeMax - total_size) / PageSize);
Kernel::GetMemoryManager().Close(KMemoryLayout::GetLinearPhysicalAddress(g_initial_process_binary_address + total_size), (InitialProcessBinarySizeMax - total_size) / PageSize);
}
return total_size;

View file

@ -35,8 +35,9 @@ namespace ams::kern {
/* Clear the memory. */
for (const auto &block : GetReference(m_page_group)) {
/* Clear and store cache. */
std::memset(GetVoidPointer(block.GetAddress()), 0xFF, block.GetSize());
cpu::StoreDataCache(GetVoidPointer(block.GetAddress()), block.GetSize());
void * const block_address = GetVoidPointer(KMemoryLayout::GetLinearVirtualAddress(block.GetAddress()));
std::memset(block_address, 0xFF, block.GetSize());
cpu::StoreDataCache(block_address, block.GetSize());
}
/* Set remaining tracking members. */

View file

@ -20,13 +20,13 @@ namespace ams::kern {
namespace {
constexpr KMemoryManager::Pool GetPoolFromMemoryRegionType(u32 type) {
if ((type | KMemoryRegionType_VirtualDramApplicationPool) == type) {
if ((type | KMemoryRegionType_DramApplicationPool) == type) {
return KMemoryManager::Pool_Application;
} else if ((type | KMemoryRegionType_VirtualDramAppletPool) == type) {
} else if ((type | KMemoryRegionType_DramAppletPool) == type) {
return KMemoryManager::Pool_Applet;
} else if ((type | KMemoryRegionType_VirtualDramSystemPool) == type) {
} else if ((type | KMemoryRegionType_DramSystemPool) == type) {
return KMemoryManager::Pool_System;
} else if ((type | KMemoryRegionType_VirtualDramSystemNonSecurePool) == type) {
} else if ((type | KMemoryRegionType_DramSystemNonSecurePool) == type) {
return KMemoryManager::Pool_SystemNonSecure;
} else {
MESOSPHERE_PANIC("InvalidMemoryRegionType for conversion to Pool");
@ -37,19 +37,21 @@ namespace ams::kern {
void KMemoryManager::Initialize(KVirtualAddress management_region, size_t management_region_size) {
/* Clear the management region to zero. */
const KVirtualAddress management_region_end = management_region + management_region_size;
std::memset(GetVoidPointer(management_region), 0, management_region_size);
/* Reset our manager count. */
m_num_managers = 0;
/* Traverse the virtual memory layout tree, initializing each manager as appropriate. */
while (m_num_managers != MaxManagerCount) {
/* Locate the region that should initialize the current manager. */
uintptr_t region_address = 0;
KPhysicalAddress region_address = Null<KPhysicalAddress>;
size_t region_size = 0;
Pool region_pool = Pool_Count;
for (const auto &it : KMemoryLayout::GetVirtualMemoryRegionTree()) {
for (const auto &it : KMemoryLayout::GetPhysicalMemoryRegionTree()) {
/* We only care about regions that we need to create managers for. */
if (!it.IsDerivedFrom(KMemoryRegionType_VirtualDramUserPool)) {
if (!it.IsDerivedFrom(KMemoryRegionType_DramUserPool)) {
continue;
}
@ -58,21 +60,24 @@ namespace ams::kern {
continue;
}
const KPhysicalAddress cur_start = it.GetAddress();
const KPhysicalAddress cur_end = it.GetEndAddress();
/* Validate the region. */
MESOSPHERE_ABORT_UNLESS(it.GetEndAddress() != 0);
MESOSPHERE_ASSERT(it.GetAddress() != Null<decltype(it.GetAddress())>);
MESOSPHERE_ASSERT(it.GetSize() > 0);
MESOSPHERE_ABORT_UNLESS(cur_end != Null<KPhysicalAddress>);
MESOSPHERE_ASSERT(cur_start != Null<KPhysicalAddress>);
MESOSPHERE_ASSERT(it.GetSize() > 0);
/* Update the region's extents. */
if (region_address == 0) {
region_address = it.GetAddress();
if (region_address == Null<KPhysicalAddress>) {
region_address = cur_start;
region_size = it.GetSize();
region_pool = GetPoolFromMemoryRegionType(it.GetType());
} else {
MESOSPHERE_ASSERT(it.GetAddress() == region_address + region_size);
MESOSPHERE_ASSERT(cur_start == region_address + region_size);
/* Update the size. */
region_size = it.GetEndAddress() - region_address;
region_size = cur_end - region_address;
MESOSPHERE_ABORT_UNLESS(GetPoolFromMemoryRegionType(it.GetType()) == region_pool);
}
}
@ -102,18 +107,22 @@ namespace ams::kern {
/* Free each region to its corresponding heap. */
size_t reserved_sizes[MaxManagerCount] = {};
const uintptr_t ini_start = GetInteger(GetInitialProcessBinaryAddress());
const uintptr_t ini_end = ini_start + InitialProcessBinarySizeMax;
const uintptr_t ini_last = ini_end - 1;
for (const auto &it : KMemoryLayout::GetVirtualMemoryRegionTree()) {
if (it.IsDerivedFrom(KMemoryRegionType_VirtualDramUserPool)) {
const KPhysicalAddress ini_start = KMemoryLayout::GetLinearPhysicalAddress(GetInitialProcessBinaryAddress());
const KPhysicalAddress ini_end = ini_start + InitialProcessBinarySizeMax;
const KPhysicalAddress ini_last = ini_end - 1;
for (const auto &it : KMemoryLayout::GetPhysicalMemoryRegionTree()) {
if (it.IsDerivedFrom(KMemoryRegionType_DramUserPool)) {
/* Get the manager for the region. */
auto &manager = m_managers[it.GetAttributes()];
if (it.GetAddress() <= ini_start && ini_last <= it.GetLastAddress()) {
const KPhysicalAddress cur_start = it.GetAddress();
const KPhysicalAddress cur_last = it.GetLastAddress();
const KPhysicalAddress cur_end = it.GetEndAddress();
if (cur_start <= ini_start && ini_last <= cur_last) {
/* Free memory before the ini to the heap. */
if (it.GetAddress() != ini_start) {
manager.Free(it.GetAddress(), (ini_start - it.GetAddress()) / PageSize);
if (cur_start != ini_start) {
manager.Free(cur_start, (ini_start - cur_start) / PageSize);
}
/* Open/reserve the ini memory. */
@ -121,21 +130,21 @@ namespace ams::kern {
reserved_sizes[it.GetAttributes()] += InitialProcessBinarySizeMax;
/* Free memory after the ini to the heap. */
if (ini_last != it.GetLastAddress()) {
MESOSPHERE_ABORT_UNLESS(it.GetEndAddress() != 0);
manager.Free(ini_end, it.GetEndAddress() - ini_end);
if (ini_last != cur_last) {
MESOSPHERE_ABORT_UNLESS(cur_end != Null<KPhysicalAddress>);
manager.Free(ini_end, cur_end - ini_end);
}
} else {
/* Ensure there's no partial overlap with the ini image. */
if (it.GetAddress() <= ini_last) {
MESOSPHERE_ABORT_UNLESS(it.GetLastAddress() < ini_start);
if (cur_start <= ini_last) {
MESOSPHERE_ABORT_UNLESS(cur_last < ini_start);
} else {
/* Otherwise, check the region for general validity. */
MESOSPHERE_ABORT_UNLESS(it.GetEndAddress() != 0);
MESOSPHERE_ABORT_UNLESS(cur_end != Null<KPhysicalAddress>);
}
/* Free the memory to the heap. */
manager.Free(it.GetAddress(), it.GetSize() / PageSize);
manager.Free(cur_start, it.GetSize() / PageSize);
}
}
}
@ -176,10 +185,10 @@ namespace ams::kern {
}
KVirtualAddress KMemoryManager::AllocateAndOpenContinuous(size_t num_pages, size_t align_pages, u32 option) {
KPhysicalAddress KMemoryManager::AllocateAndOpenContinuous(size_t num_pages, size_t align_pages, u32 option) {
/* Early return if we're allocating no pages. */
if (num_pages == 0) {
return Null<KVirtualAddress>;
return Null<KPhysicalAddress>;
}
/* Lock the pool that we're allocating from. */
@ -191,17 +200,17 @@ namespace ams::kern {
/* Loop, trying to iterate from each block. */
Impl *chosen_manager = nullptr;
KVirtualAddress allocated_block = Null<KVirtualAddress>;
KPhysicalAddress allocated_block = Null<KPhysicalAddress>;
for (chosen_manager = this->GetFirstManager(pool, dir); chosen_manager != nullptr; chosen_manager = this->GetNextManager(chosen_manager, dir)) {
allocated_block = chosen_manager->AllocateBlock(heap_index, true);
if (allocated_block != Null<KVirtualAddress>) {
if (allocated_block != Null<KPhysicalAddress>) {
break;
}
}
/* If we failed to allocate, quit now. */
if (allocated_block == Null<KVirtualAddress>) {
return Null<KVirtualAddress>;
if (allocated_block == Null<KPhysicalAddress>) {
return Null<KPhysicalAddress>;
}
/* If we allocated more than we need, free some. */
@ -242,8 +251,8 @@ namespace ams::kern {
for (Impl *cur_manager = this->GetFirstManager(pool, dir); cur_manager != nullptr; cur_manager = this->GetNextManager(cur_manager, dir)) {
while (num_pages >= pages_per_alloc) {
/* Allocate a block. */
KVirtualAddress allocated_block = cur_manager->AllocateBlock(index, random);
if (allocated_block == Null<KVirtualAddress>) {
KPhysicalAddress allocated_block = cur_manager->AllocateBlock(index, random);
if (allocated_block == Null<KPhysicalAddress>) {
break;
}
@ -288,8 +297,8 @@ namespace ams::kern {
/* Open the first reference to the pages. */
for (const auto &block : *out) {
KVirtualAddress cur_address = block.GetAddress();
size_t remaining_pages = block.GetNumPages();
KPhysicalAddress cur_address = block.GetAddress();
size_t remaining_pages = block.GetNumPages();
while (remaining_pages > 0) {
/* Get the manager for the current address. */
auto &manager = this->GetManager(cur_address);
@ -332,8 +341,8 @@ namespace ams::kern {
/* Open the first reference to the pages. */
for (const auto &block : *out) {
KVirtualAddress cur_address = block.GetAddress();
size_t remaining_pages = block.GetNumPages();
KPhysicalAddress cur_address = block.GetAddress();
size_t remaining_pages = block.GetNumPages();
while (remaining_pages > 0) {
/* Get the manager for the current address. */
auto &manager = this->GetManager(cur_address);
@ -354,8 +363,8 @@ namespace ams::kern {
/* Iterate over the allocated blocks. */
for (const auto &block : *out) {
/* Get the block extents. */
const KVirtualAddress block_address = block.GetAddress();
const size_t block_pages = block.GetNumPages();
const KPhysicalAddress block_address = block.GetAddress();
const size_t block_pages = block.GetNumPages();
/* If it has no pages, we don't need to do anything. */
if (block_pages == 0) {
@ -365,8 +374,8 @@ namespace ams::kern {
/* Fill all the pages that we need to fill. */
bool any_new = false;
{
KVirtualAddress cur_address = block_address;
size_t remaining_pages = block_pages;
KPhysicalAddress cur_address = block_address;
size_t remaining_pages = block_pages;
while (remaining_pages > 0) {
/* Get the manager for the current address. */
auto &manager = this->GetManager(cur_address);
@ -384,8 +393,8 @@ namespace ams::kern {
/* If there are new pages, update tracking for the allocation. */
if (any_new) {
/* Update tracking for the allocation. */
KVirtualAddress cur_address = block_address;
size_t remaining_pages = block_pages;
KPhysicalAddress cur_address = block_address;
size_t remaining_pages = block_pages;
while (remaining_pages > 0) {
/* Get the manager for the current address. */
auto &manager = this->GetManager(cur_address);
@ -406,14 +415,14 @@ namespace ams::kern {
} else {
/* Set all the allocated memory. */
for (const auto &block : *out) {
std::memset(GetVoidPointer(block.GetAddress()), fill_pattern, block.GetSize());
std::memset(GetVoidPointer(KMemoryLayout::GetLinearVirtualAddress(block.GetAddress())), fill_pattern, block.GetSize());
}
}
return ResultSuccess();
}
size_t KMemoryManager::Impl::Initialize(uintptr_t address, size_t size, KVirtualAddress management, KVirtualAddress management_end, Pool p) {
size_t KMemoryManager::Impl::Initialize(KPhysicalAddress address, size_t size, KVirtualAddress management, KVirtualAddress management_end, Pool p) {
/* Calculate management sizes. */
const size_t ref_count_size = (size / PageSize) * sizeof(u16);
const size_t optimize_map_size = CalculateOptimizedProcessOverheadSize(size);
@ -436,7 +445,7 @@ namespace ams::kern {
return total_management_size;
}
void KMemoryManager::Impl::TrackUnoptimizedAllocation(KVirtualAddress block, size_t num_pages) {
void KMemoryManager::Impl::TrackUnoptimizedAllocation(KPhysicalAddress block, size_t num_pages) {
/* Get the range we're tracking. */
size_t offset = this->GetPageOffset(block);
const size_t last = offset + num_pages - 1;
@ -451,7 +460,7 @@ namespace ams::kern {
}
}
void KMemoryManager::Impl::TrackOptimizedAllocation(KVirtualAddress block, size_t num_pages) {
void KMemoryManager::Impl::TrackOptimizedAllocation(KPhysicalAddress block, size_t num_pages) {
/* Get the range we're tracking. */
size_t offset = this->GetPageOffset(block);
const size_t last = offset + num_pages - 1;
@ -466,7 +475,7 @@ namespace ams::kern {
}
}
bool KMemoryManager::Impl::ProcessOptimizedAllocation(KVirtualAddress block, size_t num_pages, u8 fill_pattern) {
bool KMemoryManager::Impl::ProcessOptimizedAllocation(KPhysicalAddress block, size_t num_pages, u8 fill_pattern) {
/* We want to return whether any pages were newly allocated. */
bool any_new = false;
@ -483,7 +492,7 @@ namespace ams::kern {
any_new = true;
/* Fill the page. */
std::memset(GetVoidPointer(m_heap.GetAddress() + offset * PageSize), fill_pattern, PageSize);
std::memset(GetVoidPointer(KMemoryLayout::GetLinearVirtualAddress(m_heap.GetAddress()) + offset * PageSize), fill_pattern, PageSize);
}
offset++;

View file

@ -18,24 +18,30 @@
namespace ams::kern {
void KPageGroup::Finalize() {
auto it = m_block_list.begin();
while (it != m_block_list.end()) {
KBlockInfo *info = std::addressof(*it);
it = m_block_list.erase(it);
m_manager->Free(info);
KBlockInfo *cur = m_first_block;
while (cur != nullptr) {
KBlockInfo *next = cur->GetNext();
m_manager->Free(cur);
cur = next;
}
m_first_block = nullptr;
m_last_block = nullptr;
}
void KPageGroup::CloseAndReset() {
auto &mm = Kernel::GetMemoryManager();
auto it = m_block_list.begin();
while (it != m_block_list.end()) {
KBlockInfo *info = std::addressof(*it);
it = m_block_list.erase(it);
mm.Close(info->GetAddress(), info->GetNumPages());
m_manager->Free(info);
KBlockInfo *cur = m_first_block;
while (cur != nullptr) {
KBlockInfo *next = cur->GetNext();
mm.Close(cur->GetAddress(), cur->GetNumPages());
m_manager->Free(cur);
cur = next;
}
m_first_block = nullptr;
m_last_block = nullptr;
}
size_t KPageGroup::GetNumPages() const {
@ -48,7 +54,7 @@ namespace ams::kern {
return num_pages;
}
Result KPageGroup::AddBlock(KVirtualAddress addr, size_t num_pages) {
Result KPageGroup::AddBlock(KPhysicalAddress addr, size_t num_pages) {
/* Succeed immediately if we're adding no pages. */
R_SUCCEED_IF(num_pages == 0);
@ -56,9 +62,8 @@ namespace ams::kern {
MESOSPHERE_ASSERT(addr < addr + num_pages * PageSize);
/* Try to just append to the last block. */
if (!m_block_list.empty()) {
auto it = --(m_block_list.end());
R_SUCCEED_IF(it->TryConcatenate(addr, num_pages));
if (m_last_block != nullptr) {
R_SUCCEED_IF(m_last_block->TryConcatenate(addr, num_pages));
}
/* Allocate a new block. */
@ -67,7 +72,14 @@ namespace ams::kern {
/* Initialize the block. */
new_block->Initialize(addr, num_pages);
m_block_list.push_back(*new_block);
/* Add the block to our list. */
if (m_last_block != nullptr) {
m_last_block->SetNext(new_block);
} else {
m_first_block = new_block;
}
m_last_block = new_block;
return ResultSuccess();
}
@ -89,10 +101,10 @@ namespace ams::kern {
}
bool KPageGroup::IsEquivalentTo(const KPageGroup &rhs) const {
auto lit = m_block_list.cbegin();
auto rit = rhs.m_block_list.cbegin();
auto lend = m_block_list.cend();
auto rend = rhs.m_block_list.cend();
auto lit = this->begin();
auto rit = rhs.begin();
auto lend = this->end();
auto rend = rhs.end();
while (lit != lend && rit != rend) {
if (*lit != *rit) {

View file

@ -17,7 +17,7 @@
namespace ams::kern {
void KPageHeap::Initialize(KVirtualAddress address, size_t size, KVirtualAddress management_address, size_t management_size, const size_t *block_shifts, size_t num_block_shifts) {
void KPageHeap::Initialize(KPhysicalAddress address, size_t size, KVirtualAddress management_address, size_t management_size, const size_t *block_shifts, size_t num_block_shifts) {
/* Check our assumptions. */
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(address), PageSize));
MESOSPHERE_ASSERT(util::IsAligned(size, PageSize));
@ -51,11 +51,11 @@ namespace ams::kern {
return num_free;
}
KVirtualAddress KPageHeap::AllocateBlock(s32 index, bool random) {
KPhysicalAddress KPageHeap::AllocateBlock(s32 index, bool random) {
const size_t needed_size = m_blocks[index].GetSize();
for (s32 i = index; i < static_cast<s32>(m_num_blocks); i++) {
if (const KVirtualAddress addr = m_blocks[i].PopBlock(random); addr != Null<KVirtualAddress>) {
if (const KPhysicalAddress addr = m_blocks[i].PopBlock(random); addr != Null<KPhysicalAddress>) {
if (const size_t allocated_size = m_blocks[i].GetSize(); allocated_size > needed_size) {
this->Free(addr + needed_size, (allocated_size - needed_size) / PageSize);
}
@ -63,16 +63,16 @@ namespace ams::kern {
}
}
return Null<KVirtualAddress>;
return Null<KPhysicalAddress>;
}
void KPageHeap::FreeBlock(KVirtualAddress block, s32 index) {
void KPageHeap::FreeBlock(KPhysicalAddress block, s32 index) {
do {
block = m_blocks[index++].PushBlock(block);
} while (block != Null<KVirtualAddress>);
} while (block != Null<KPhysicalAddress>);
}
void KPageHeap::Free(KVirtualAddress addr, size_t num_pages) {
void KPageHeap::Free(KPhysicalAddress addr, size_t num_pages) {
/* Freeing no pages is a no-op. */
if (num_pages == 0) {
return;
@ -80,16 +80,16 @@ namespace ams::kern {
/* Find the largest block size that we can free, and free as many as possible. */
s32 big_index = static_cast<s32>(m_num_blocks) - 1;
const KVirtualAddress start = addr;
const KVirtualAddress end = addr + num_pages * PageSize;
KVirtualAddress before_start = start;
KVirtualAddress before_end = start;
KVirtualAddress after_start = end;
KVirtualAddress after_end = end;
const KPhysicalAddress start = addr;
const KPhysicalAddress end = addr + num_pages * PageSize;
KPhysicalAddress before_start = start;
KPhysicalAddress before_end = start;
KPhysicalAddress after_start = end;
KPhysicalAddress after_end = end;
while (big_index >= 0) {
const size_t block_size = m_blocks[big_index].GetSize();
const KVirtualAddress big_start = util::AlignUp(GetInteger(start), block_size);
const KVirtualAddress big_end = util::AlignDown(GetInteger(end), block_size);
const KPhysicalAddress big_start = util::AlignUp(GetInteger(start), block_size);
const KPhysicalAddress big_end = util::AlignDown(GetInteger(end), block_size);
if (big_start < big_end) {
/* Free as many big blocks as we can. */
for (auto block = big_start; block < big_end; block += block_size) {

View file

@ -116,7 +116,6 @@ namespace ams::kern {
m_cached_physical_linear_region = nullptr;
m_cached_physical_heap_region = nullptr;
m_cached_virtual_heap_region = nullptr;
/* Initialize our implementation. */
m_impl.InitializeForKernel(table, start, end);
@ -1145,7 +1144,7 @@ namespace ams::kern {
/* Clear all pages. */
for (const auto &it : pg) {
std::memset(GetVoidPointer(it.GetAddress()), m_heap_fill_value, it.GetSize());
std::memset(GetVoidPointer(GetHeapVirtualAddress(it.GetAddress())), m_heap_fill_value, it.GetSize());
}
/* Map the pages. */
@ -1171,13 +1170,9 @@ namespace ams::kern {
/* Iterate, mapping all pages in the group. */
for (const auto &block : pg) {
/* We only allow mapping pages in the heap, and we require we're mapping non-empty blocks. */
MESOSPHERE_ABORT_UNLESS(block.GetAddress() < block.GetLastAddress());
MESOSPHERE_ABORT_UNLESS(IsHeapVirtualAddress(block.GetAddress(), block.GetSize()));
/* Map and advance. */
const KPageProperties cur_properties = (cur_address == start_address) ? properties : KPageProperties{ properties.perm, properties.io, properties.uncached, DisableMergeAttribute_None };
R_TRY(this->Operate(page_list, cur_address, block.GetNumPages(), GetHeapPhysicalAddress(block.GetAddress()), true, cur_properties, OperationType_Map, reuse_ll));
R_TRY(this->Operate(page_list, cur_address, block.GetNumPages(), block.GetAddress(), true, cur_properties, OperationType_Map, reuse_ll));
cur_address += block.GetSize();
}
@ -1198,7 +1193,7 @@ namespace ams::kern {
auto pg_it = pg.begin();
MESOSPHERE_ABORT_UNLESS(pg_it != pg.end());
KPhysicalAddress pg_phys_addr = GetHeapPhysicalAddress(pg_it->GetAddress());
KPhysicalAddress pg_phys_addr = pg_it->GetAddress();
size_t pg_pages = pg_it->GetNumPages();
auto it = m_memory_block_manager.FindIterator(start_address);
@ -1228,7 +1223,7 @@ namespace ams::kern {
/* Advance our physical block. */
++pg_it;
pg_phys_addr = GetHeapPhysicalAddress(pg_it->GetAddress());
pg_phys_addr = pg_it->GetAddress();
pg_pages = pg_it->GetNumPages();
}
@ -1285,7 +1280,7 @@ namespace ams::kern {
const size_t cur_pages = cur_size / PageSize;
R_UNLESS(IsHeapPhysicalAddress(cur_addr), svc::ResultInvalidCurrentMemory());
R_TRY(pg.AddBlock(GetHeapVirtualAddress(cur_addr), cur_pages));
R_TRY(pg.AddBlock(cur_addr, cur_pages));
cur_addr = next_entry.phys_addr;
cur_size = next_entry.block_size;
@ -1304,7 +1299,7 @@ namespace ams::kern {
/* add the last block. */
const size_t cur_pages = cur_size / PageSize;
R_UNLESS(IsHeapPhysicalAddress(cur_addr), svc::ResultInvalidCurrentMemory());
R_TRY(pg.AddBlock(GetHeapVirtualAddress(cur_addr), cur_pages));
R_TRY(pg.AddBlock(cur_addr, cur_pages));
return ResultSuccess();
}
@ -1323,7 +1318,7 @@ namespace ams::kern {
/* We're going to validate that the group we'd expect is the group we see. */
auto cur_it = pg.begin();
KVirtualAddress cur_block_address = cur_it->GetAddress();
KPhysicalAddress cur_block_address = cur_it->GetAddress();
size_t cur_block_pages = cur_it->GetNumPages();
auto UpdateCurrentIterator = [&]() ALWAYS_INLINE_LAMBDA {
@ -1367,7 +1362,7 @@ namespace ams::kern {
return false;
}
if (cur_block_address != GetHeapVirtualAddress(cur_addr) || cur_block_pages < cur_pages) {
if (cur_block_address != cur_addr || cur_block_pages < cur_pages) {
return false;
}
@ -1395,7 +1390,7 @@ namespace ams::kern {
return false;
}
return cur_block_address == GetHeapVirtualAddress(cur_addr) && cur_block_pages == (cur_size / PageSize);
return cur_block_address == cur_addr && cur_block_pages == (cur_size / PageSize);
}
Result KPageTableBase::GetContiguousMemoryRangeWithState(MemoryRange *out, KProcessAddress address, size_t size, u32 state_mask, u32 state, u32 perm_mask, u32 perm, u32 attr_mask, u32 attr) {
@ -1434,7 +1429,7 @@ namespace ams::kern {
/* The memory is contiguous, so set the output range. */
*out = {
.address = GetLinearMappedVirtualAddress(phys_address),
.address = phys_address,
.size = size,
};
@ -1533,7 +1528,7 @@ namespace ams::kern {
/* Ensure cache coherency, if we're setting pages as executable. */
if (is_x) {
for (const auto &block : pg) {
cpu::StoreDataCache(GetVoidPointer(block.GetAddress()), block.GetSize());
cpu::StoreDataCache(GetVoidPointer(GetHeapVirtualAddress(block.GetAddress())), block.GetSize());
}
cpu::InvalidateEntireInstructionCache();
}
@ -1658,7 +1653,7 @@ namespace ams::kern {
/* Clear all the newly allocated pages. */
for (const auto &it : pg) {
std::memset(GetVoidPointer(it.GetAddress()), m_heap_fill_value, it.GetSize());
std::memset(GetVoidPointer(GetHeapVirtualAddress(it.GetAddress())), m_heap_fill_value, it.GetSize());
}
/* Map the pages. */
@ -3579,16 +3574,16 @@ namespace ams::kern {
R_UNLESS(memory_reservation.Succeeded(), svc::ResultLimitReached());
/* Ensure that we manage page references correctly. */
KVirtualAddress start_partial_page = Null<KVirtualAddress>;
KVirtualAddress end_partial_page = Null<KVirtualAddress>;
KProcessAddress cur_mapped_addr = dst_addr;
KPhysicalAddress start_partial_page = Null<KPhysicalAddress>;
KPhysicalAddress end_partial_page = Null<KPhysicalAddress>;
KProcessAddress cur_mapped_addr = dst_addr;
/* If the partial pages are mapped, an extra reference will have been opened. Otherwise, they'll free on scope exit. */
ON_SCOPE_EXIT {
if (start_partial_page != Null<KVirtualAddress>) {
if (start_partial_page != Null<KPhysicalAddress>) {
Kernel::GetMemoryManager().Close(start_partial_page, 1);
}
if (end_partial_page != Null<KVirtualAddress>) {
if (end_partial_page != Null<KPhysicalAddress>) {
Kernel::GetMemoryManager().Close(end_partial_page, 1);
}
};
@ -3603,13 +3598,13 @@ namespace ams::kern {
/* Allocate the start page as needed. */
if (aligned_src_start < mapping_src_start) {
start_partial_page = Kernel::GetMemoryManager().AllocateAndOpenContinuous(1, 0, m_allocate_option);
R_UNLESS(start_partial_page != Null<KVirtualAddress>, svc::ResultOutOfMemory());
R_UNLESS(start_partial_page != Null<KPhysicalAddress>, svc::ResultOutOfMemory());
}
/* Allocate the end page as needed. */
if (mapping_src_end < aligned_src_end && (aligned_src_start < mapping_src_end || aligned_src_start == mapping_src_start)) {
end_partial_page = Kernel::GetMemoryManager().AllocateAndOpenContinuous(1, 0, m_allocate_option);
R_UNLESS(end_partial_page != Null<KVirtualAddress>, svc::ResultOutOfMemory());
R_UNLESS(end_partial_page != Null<KPhysicalAddress>, svc::ResultOutOfMemory());
}
/* Get the implementation. */
@ -3631,8 +3626,9 @@ namespace ams::kern {
size_t tot_block_size = cur_block_size;
/* Map the start page, if we have one. */
if (start_partial_page != Null<KVirtualAddress>) {
if (start_partial_page != Null<KPhysicalAddress>) {
/* Ensure the page holds correct data. */
const KVirtualAddress start_partial_virt = GetHeapVirtualAddress(start_partial_page);
if (send) {
const size_t partial_offset = src_start - aligned_src_start;
size_t copy_size, clear_size;
@ -3644,18 +3640,18 @@ namespace ams::kern {
clear_size = 0;
}
std::memset(GetVoidPointer(start_partial_page), fill_val, partial_offset);
std::memcpy(GetVoidPointer(start_partial_page + partial_offset), GetVoidPointer(GetHeapVirtualAddress(cur_block_addr) + partial_offset), copy_size);
std::memset(GetVoidPointer(start_partial_virt), fill_val, partial_offset);
std::memcpy(GetVoidPointer(start_partial_virt + partial_offset), GetVoidPointer(GetHeapVirtualAddress(cur_block_addr) + partial_offset), copy_size);
if (clear_size > 0) {
std::memset(GetVoidPointer(start_partial_page + partial_offset + copy_size), fill_val, clear_size);
std::memset(GetVoidPointer(start_partial_virt + partial_offset + copy_size), fill_val, clear_size);
}
} else {
std::memset(GetVoidPointer(start_partial_page), fill_val, PageSize);
std::memset(GetVoidPointer(start_partial_virt), fill_val, PageSize);
}
/* Map the page. */
const KPageProperties start_map_properties = { test_perm, false, false, DisableMergeAttribute_DisableHead };
R_TRY(this->Operate(updater.GetPageList(), cur_mapped_addr, 1, GetHeapPhysicalAddress(start_partial_page), true, start_map_properties, OperationType_Map, false));
R_TRY(this->Operate(updater.GetPageList(), cur_mapped_addr, 1, start_partial_page, true, start_map_properties, OperationType_Map, false));
/* Update tracking extents. */
cur_mapped_addr += PageSize;
@ -3715,19 +3711,20 @@ namespace ams::kern {
}
/* Map the end page, if we have one. */
if (end_partial_page != Null<KVirtualAddress>) {
if (end_partial_page != Null<KPhysicalAddress>) {
/* Ensure the page holds correct data. */
const KVirtualAddress end_partial_virt = GetHeapVirtualAddress(end_partial_page);
if (send) {
const size_t copy_size = src_end - mapping_src_end;
std::memcpy(GetVoidPointer(end_partial_page), GetVoidPointer(GetHeapVirtualAddress(cur_block_addr)), copy_size);
std::memset(GetVoidPointer(end_partial_page + copy_size), fill_val, PageSize - copy_size);
std::memcpy(GetVoidPointer(end_partial_virt), GetVoidPointer(GetHeapVirtualAddress(cur_block_addr)), copy_size);
std::memset(GetVoidPointer(end_partial_virt + copy_size), fill_val, PageSize - copy_size);
} else {
std::memset(GetVoidPointer(end_partial_page), fill_val, PageSize);
std::memset(GetVoidPointer(end_partial_virt), fill_val, PageSize);
}
/* Map the page. */
const KPageProperties map_properties = { test_perm, false, false, (cur_mapped_addr == dst_addr) ? DisableMergeAttribute_DisableHead : DisableMergeAttribute_None };
R_TRY(this->Operate(updater.GetPageList(), cur_mapped_addr, 1, GetHeapPhysicalAddress(end_partial_page), true, map_properties, OperationType_Map, false));
R_TRY(this->Operate(updater.GetPageList(), cur_mapped_addr, 1, end_partial_page, true, map_properties, OperationType_Map, false));
}
/* Update memory blocks to reflect our changes */
@ -4246,7 +4243,7 @@ namespace ams::kern {
/* Iterate over the memory. */
auto pg_it = pg.begin();
KPhysicalAddress pg_phys_addr = GetHeapPhysicalAddress(pg_it->GetAddress());
KPhysicalAddress pg_phys_addr = pg_it->GetAddress();
size_t pg_pages = pg_it->GetNumPages();
auto it = m_memory_block_manager.FindIterator(cur_address);
@ -4272,7 +4269,7 @@ namespace ams::kern {
/* Advance our physical block. */
++pg_it;
pg_phys_addr = GetHeapPhysicalAddress(pg_it->GetAddress());
pg_phys_addr = pg_it->GetAddress();
pg_pages = pg_it->GetNumPages();
}
@ -4410,7 +4407,7 @@ namespace ams::kern {
} else {
if (cur_valid) {
MESOSPHERE_ABORT_UNLESS(IsHeapPhysicalAddress(cur_entry.phys_addr));
R_TRY(pg.AddBlock(GetHeapVirtualAddress(cur_entry.phys_addr), cur_entry.block_size / PageSize));
R_TRY(pg.AddBlock(cur_entry.phys_addr, cur_entry.block_size / PageSize));
}
/* Update tracking variables. */
@ -4429,7 +4426,7 @@ namespace ams::kern {
/* Add the last block. */
if (cur_valid) {
MESOSPHERE_ABORT_UNLESS(IsHeapPhysicalAddress(cur_entry.phys_addr));
R_TRY(pg.AddBlock(GetHeapVirtualAddress(cur_entry.phys_addr), (size - tot_size) / PageSize));
R_TRY(pg.AddBlock(cur_entry.phys_addr, (size - tot_size) / PageSize));
}
}
MESOSPHERE_ASSERT(pg.GetNumPages() == mapped_size / PageSize);
@ -4457,7 +4454,7 @@ namespace ams::kern {
/* Iterate over the memory we unmapped. */
auto it = m_memory_block_manager.FindIterator(cur_address);
auto pg_it = pg.begin();
KPhysicalAddress pg_phys_addr = GetHeapPhysicalAddress(pg_it->GetAddress());
KPhysicalAddress pg_phys_addr = pg_it->GetAddress();
size_t pg_pages = pg_it->GetNumPages();
while (true) {
@ -4479,7 +4476,7 @@ namespace ams::kern {
/* Advance our physical block. */
++pg_it;
pg_phys_addr = GetHeapPhysicalAddress(pg_it->GetAddress());
pg_phys_addr = pg_it->GetAddress();
pg_pages = pg_it->GetNumPages();
}
@ -4567,7 +4564,7 @@ namespace ams::kern {
/* Clear the new memory. */
for (const auto &block : pg) {
std::memset(GetVoidPointer(block.GetAddress()), m_heap_fill_value, block.GetSize());
std::memset(GetVoidPointer(GetHeapVirtualAddress(block.GetAddress())), m_heap_fill_value, block.GetSize());
}
/* Map the new memory. */

View file

@ -51,7 +51,7 @@ namespace ams::kern {
/* Clear all pages in the memory. */
for (const auto &block : m_page_group) {
std::memset(GetVoidPointer(block.GetAddress()), 0, block.GetSize());
std::memset(GetVoidPointer(KMemoryLayout::GetLinearVirtualAddress(block.GetAddress())), 0, block.GetSize());
}
return ResultSuccess();

View file

@ -43,7 +43,7 @@ namespace ams::kern::svc {
ON_SCOPE_EXIT { contig_range.Close(); };
/* Adjust to remain within range. */
KVirtualAddress operate_address = contig_range.address;
KVirtualAddress operate_address = KMemoryLayout::GetLinearVirtualAddress(contig_range.address);
size_t operate_size = contig_range.size;
if (cur_address < address) {
operate_address += (address - cur_address);